【论文阅读】Long-Tailed Recognition via Weight Balancing(CVPR2022)

目录

  • 论文
  • 使用方法
    • weight decay
    • MaxNorm
  • 如果使用原来的代码报错的可以看下面这个

论文

问题:真实世界中普遍存在长尾识别问题,朴素训练产生的模型在更高准确率方面偏向于普通类,导致稀有的类别准确率偏低。
key:解决LTR的关键是平衡各方面,包括数据分布、训练损失和学习中的梯度。
文章主要讨论了三种方法: L2normalization, weight decay, and MaxNorm
本文提出了一个两阶段训练的范式
a. 利用调节权重衰减的交叉熵损失学习特征。
b. 通过调节权重衰减和Max Norm使用类平衡损失学习分类器。
一些有用的看法

  1. 研究表明,与联合训练特征学习和分类器学习的模型相比,解耦特征学习和分类器学习导致了显著的改进。
  2. 根据基准测试结果,通过集成专家模型或采用主动数据增强技术的自监督预训练来实现最好精度。
  3. 研究发现,SGD动量导致LTR出现问题,阻碍了进一步改善。
  4. 最近,Kang等人令人信服地证明了阶段性训练对LTR很重要。
  5. 权重衰减有助于学习隐藏层的平衡权重。
  6. 重要的是,我们的探索发现,虽然在分类器上使用L2规范化约束进行训练比简单训练有所改进,但它的表现不如下面描述的其他两个正则化。
  7. 与严格将所有滤波器权重的范数值设置为1的L2归一化不同,MaxNorm放松了这一约束,允许权重在训练期间在范数球内移动。
  8. 权重衰减中,不同数据集的最优λ各不相同——较大的数据集需要较小的权重衰减,直观地说,因为在更多数据上学习有助于泛化,因此需要较少的正则化。
    单阶段使用不平衡损失训练效果不好的原因:虽然他们没有解释为什么具有类平衡损失的单阶段训练表现不佳,但直观地说,这是因为类平衡损失人为地放大了从罕见的类训练数据计算的梯度,这损害了特征表示学习,从而损害了最终的LTR性能。
    本文作者使用了weight decay和max norm两种方法结合,因为发现两个结合效果更好。让模型不同类之间权重相差不会很大的同时,还能让这些权重缓慢增加。
    下面这幅图就是解释了这些方法的特点。
    在这里插入图片描述
    第一个就是普通方法训练的,它常见的类别权重增长快。
    第二个是L2 normalization,它把所有类别的权重都限定在一个常数。
    第三个是权重衰减,它的所有类的权重小,而且权重在增长。
    第四个是MaxNorm,它限制最大的权重。
    第五个是权重衰减和MaxNorm,会导致范数中的权重较小且平衡。

使用方法

weight decay

先定义好权重衰减的值。

weight_decay = 0.1 #weight decay value

然后在优化器中调用。Adam还有其他的都有weight_decay。

optimizer = optim.SGD([{'params': active_layers, 'lr': base_lr}], lr=base_lr, momentum=0.9, weight_decay=weight_decay)

MaxNorm

就是这个论文中的regularizers.py中的代码。只要会使用就好。就是要是不是作者代码中的模型的话,model.encoder.fc还需要根据自己的代码修改。

#使用前先定义好初始化好
pgdFunc = MaxNorm_via_PGD(thresh=thresh)
pgdFunc.setPerLayerThresh(model) # set per-layer thresholds这个是计算模型每一层的权重的阈值,这篇论文中只计算最后线性层的权重,并对最后线性层的权重进行限制

当模型训练一个epoch结束后,对已经更新完毕的模型权重进行限制,如果超过阈值就进行更新,让权重在最大范数的约束下。

 if pgdFunc:# Projected Gradient DescentpgdFunc.PGD(model)#对权重进行限制
import torch
import torch.nn as nn
import math
# The classes below wrap core functions to impose weight regurlarization constraints in training or finetuning a network.class MaxNorm_via_PGD():def __init__(self, thresh=1.0, LpNorm=1, tau=1):self.thresh = threshself.LpNorm = LpNormself.tau = tauself.perLayerThresh = []def setPerLayerThresh(self, model):#根据指定的模型设置每层的阈值#set pre-layer thresholdsself.perLayerThresh = []for curLayer in [model.encoder.fc.weight, model.encoder.fc.bias]:#遍历模型的最后两层curparam = curLayer.data#获取当前层的数据if len(curparam.shape) <= 1:#如果层只有一个维度,是一个偏置或者是一个1D的向量,则设置这一层的阈值为无穷大,继续下一层self.perLayerThresh.append(float('inf'))continuecurparam_vec = curparam.reshape((curparam.shape[0], -1))#如果不是,把权重张量展开neuronNorm_curparam = torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1).detach().unsqueeze(-1)#沿着第一维计算P番薯,结果存储curLayerThresh = neuronNorm_curparam.min() + self.thresh*(neuronNorm_curparam.max() - neuronNorm_curparam.min())#计算每一层的阈值及神经元范数的最小值加上最大值和最小值之间的缩放差self.perLayerThresh.append(curLayerThresh)#每层阈值存储def PGD(self, model):#定义PGD函数,用于在模型的参数上执行投影梯度下降,试试最大范数约束if len(self.perLayerThresh) == 0:#如果每层的阈值是空,用setPerLayerThresh方法初始化self.setPerLayerThresh(model)for i, curLayer in enumerate([model.encoder.fc.weight, model.encoder.fc.bias]):#遍历模型的最后两层curparam = curLayer.data#获取当前层的数据张量值curparam_vec = curparam.reshape((curparam.shape[0], -1))#变成一维neuronNorm_curparam = (torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1)**self.tau).detach().unsqueeze(-1)#在最后加一维#计算权重张量中每行神经元番薯的tau次方scalingVect = torch.ones_like(curparam)#创建一个形状与当前层数据相同的张量,用1初始化curLayerThresh = self.perLayerThresh[i]#获取阈值idx = neuronNorm_curparam > curLayerThresh#创建bool保存超过阈值的神经元idx = idx.squeeze()#tmp = curLayerThresh / (neuronNorm_curparam[idx].squeeze())**(self.tau)#根据每层的阈值和超过阈值的神经元番薯计算缩放因子for _ in range(len(scalingVect.shape)-1):#扩展缩放因子以匹配当前层数据的维度tmp = tmp.unsqueeze(-1)scalingVect[idx] = torch.mul(scalingVect[idx],tmp)curparam[idx] = scalingVect[idx] * curparam[idx]curparam[idx] = scalingVect[idx] * curparam[idx]#通过缩放值更新当前层的数据,以便对超过阈值的神经元进行缩放。完成权重更新

如果使用原来的代码报错的可以看下面这个

我的网络只有一层是线性层idx = idx.squeeze(),idx是(1,1)形状的,squeeze就没了,所以报错,如果有这个原因的可以改成idx = idx.squeeze(1)。maxnorm只改最后两层/一层权重所以,定义了一个列表存储线性层只取最后两层或者一层。

class MaxNorm_via_PGD():# learning a max-norm constrainted network via projected gradient descent (PGD)def __init__(self, thresh=1.0, LpNorm=2, tau=1):self.thresh = threshself.LpNorm = LpNormself.tau = tauself.perLayerThresh = []def setPerLayerThresh(self, model):# set per-layer thresholdsself.perLayerThresh = []#存储每一层的阈值self.last_two_linear_layers = []#提取线性层for name, module in model.named_children():if isinstance(module, nn.Linear):self.last_two_linear_layers.append(module)for linear_layer in self.last_two_linear_layers[-min(2, len(self.last_two_linear_layers)):]:  # here we only apply MaxNorm over the last two layerscurparam = linear_layer.weight.dataif len(curparam.shape) <= 1:self.perLayerThresh.append(float('inf'))continuecurparam_vec = curparam.reshape((curparam.shape[0], -1))neuronNorm_curparam = torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1).detach().unsqueeze(-1)curLayerThresh = neuronNorm_curparam.min() + self.thresh * (neuronNorm_curparam.max() - neuronNorm_curparam.min())self.perLayerThresh.append(curLayerThresh)def PGD(self, model):if len(self.perLayerThresh) == 0:self.setPerLayerThresh(model)for i, curLayer in enumerate([self.last_two_linear_layers[-min(2,len(self.last_two_linear_layers))]]):  # here we only apply MaxNorm over the last two layerscurparam = curLayer.weight.datacurparam_vec = curparam.reshape((curparam.shape[0], -1))neuronNorm_curparam = (torch.linalg.norm(curparam_vec, ord=self.LpNorm, dim=1) ** self.tau).detach().unsqueeze(-1)scalingVect = torch.ones_like(curparam)curLayerThresh = self.perLayerThresh[i]idx = neuronNorm_curparam > curLayerThreshidx = idx.squeeze(1)tmp = curLayerThresh / (neuronNorm_curparam[idx].squeeze()) ** (self.tau)for _ in range(len(scalingVect.shape) - 1):tmp = tmp.unsqueeze(-1)scalingVect[idx] = torch.mul(scalingVect[idx], tmp)curparam[idx] = scalingVect[idx] * curparam[idx]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/439448.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VRRP协议原理

目录 VRRP的产生单网关的缺陷多网关存在的问题VRRP基本概述VRRP基本结构状态机 VRRP主备备份工作过程VRRP的工作过程如果Master发生故障&#xff0c;则主备切换的过程如果原Master故障恢复&#xff0c;则主备回切的过程 VRRP联动功能 VRRP负载分担工作过程 VRRP的产生 单网关的…

网络体系结构 和网络原理之UDP和TCP

目录 网络分层 一. 应用层 http协议 二. 传输层 1. 介绍 2.UDP协议 (1)组成 (2)细节 3.TCP协议 (1)特性如下链接&#xff1a; (2)组成 (3)特点 三. 网络层 四. 数据链路层 1.介绍 2.以太网协议 3.mac地址和ip地址 五. 物理层 DNS 网络分层 一. 应用层 应用程序 现成的…

《幻兽帕鲁》最全攻略合集!持续更新数据中!幻兽帕鲁下载 幻兽帕鲁爆火

《幻兽帕鲁》是由日本开发商Pocket Pair推出的一款动作冒险生存游戏。这款游戏以丰富的养成内容和高度自由的探索、冒险和建造玩法而受到玩家的好评。虽然《幻兽帕鲁》官方只推出了Windows电脑版本&#xff0c;但是很多Mac电脑玩家利用Crossover&#xff0c;也成功玩上了《幻兽…

Idea设置代理后无法clone git项目

背景 对于我们程序员来说&#xff0c;经常上github找项目、找资料是必不可少的&#xff0c;但是一些原因&#xff0c;我们访问的时候速度特别的慢&#xff0c;需要有个代理&#xff0c;才能正常的访问。 今天碰到个问题&#xff0c;使用idea工具 clone项目&#xff0c;速度特…

Github 2024-01-30 开源项目日报 Top10

根据Github Trendings的统计&#xff0c;今日(2024-01-30统计)共有10个项目上榜。根据开发语言中项目的数量&#xff0c;汇总情况如下&#xff1a; 开发语言项目数量Python项目4TypeScript项目2Jupyter Notebook项目2HTML项目1Rust项目1C项目1 稳定扩散Web UI 创建周期&…

【Docker】docker安装jenkins

一、执行命令 下载jenkins镜像 #下载jenkins 镜像 docker pull jenkins/jenkins:latest-jdk8 启动jenkins容器 #启动jenkins 容器 #挂载 如果不挂载 每次启动jenkins的配置、插件、用户等信息都没有了 #jenkins_home 包含jenkins配置、插件、用户等信息。 要指定必须配置用…

delphi fmxui 做的一些跨平台app

pascal语音显然已经没落&#xff0c;但delphi还在坚挺着&#xff0c;每年都会发布新版本&#xff0c; 主要是做跨平台应用。 如果你觉得qt qml 写android app 比较麻烦&#xff0c;那可以尝试delphi 12&#xff0c;可以用c builder 尝试 android&#xff0c;ios 开发 下面的…

数据写入HBase(scala)

package sourceimport org.apache.hadoop.hbase.{HBaseConfiguration, TableName} import org.apache.hadoop.hbase.client.{ConnectionFactory, Put} import org.apache.hadoop.hbase.util.Bytesobject ffff {def main(args: Array[String]): Unit {//hbase连接配置val conf …

通过Opencv进行角点检测

目录 引入 介绍 ①使用的主要函数介绍 ②实际例子解释 ③自相似性是什么? 引入 我们想要获取图片上的角点,就要用到我们的harris角点检测 介绍 ①使用的主要函数介绍 cv2.cornerHarris() img&#xff1a; 数据类型为 float32 的入图像 不是float32的数据要使用&#xff0…

三、ElasticSearch集群搭建实战

本篇ES集群搭建主要是在Linux VM上&#xff0c;未使用Docker方式, ES版本为7.10 ,选择7.10版本原因可以看往期文章介绍。 一、ElasticSearch集群搭建须知 JVM设置 Elasticsearch是基于Java运行的&#xff0c;es7.10可以使用jdk1.8 ~ jdk11之间的版本&#xff0c;更高版本还没…

R语言(数据导入,清洗,可视化,特征工程,建模)

记录一下痛失的超级轻松的数据分析实习&#xff08;线上&#xff09;&#xff0c;hr问我有没有相关经历&#xff0c;我说我会用jupyter book进行数据导入&#xff0c;清洗&#xff0c;可视化&#xff0c;特征工程&#xff0c;建模&#xff0c;python学和用的比较多&#xff0c;…

2024不可不会的StableDiffusion之扩散模型(四)

1. 引言 这是我关于StableDiffusion学习系列的第四篇文章&#xff0c;如果之前的文章你还没有阅读&#xff0c;强烈推荐大家翻看前篇内容。在本文中&#xff0c;我们将学习构成StableDiffusion的第三个基础组件基于Unet的扩散模型&#xff0c;并针该组件的功能进行详细的阐述。…