基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道

基于MATLAB实现的OFDM仿真调制解调,BPSK、QPSK、4QAM、16QAM、32QAM,加性高斯白噪声信道、TDL瑞利衰落信道

相关链接

OFDM中的帧(frame)、符号(symbol)、子载波(subcarriers)、导频(Pilot)、保护间隔(guard)的关系图解以及代码详解–MATLAB

【学习笔记】OFDM的原理和技术介绍以及仿真结果分析附代码–MATLAB

1 加性高斯白噪声信道

在本程序中,通过MATLAB仿真了OFDM的发射、信道、接收解调的过程。支持的BPSK、QPSK、多种QAM的解调方式,并计算了不同信噪比下的误比特率。高斯白噪声信道下,不需要信道估计和信道均衡,但是在衰落信道中必须要信道估计或信道均衡,或者两个都使用,才能正确的解调。以下在衰落信道中的解调只实现了信道均衡。

1.1 BPSK和QSPK

%-----------------------仿真OFDM---------------------------%
%% 设置参数
clear;clc;
Nk = 128; % 子载波个数
Nfft = 128; % fft长度
Nframe = 6; % 一帧中有几个OFDM符号M = 2; % 调制符号所含比特(改为1:BPSK,2:QPSK)
SR = 250000; % 符号速率
BR = SR .* M; % 比特率
NGI = 32; % 保护间隔长度
EbN0s = 0:1:12; % 信噪比
Nsym = Nfft + NGI; % 系统长度
bers = zeros(1, length(EbN0s));
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体for kk = 1:length(EbN0s)% rng('default')          % 初始化随机种子EbN0 = EbN0s(kk);nloop = 10000; % 发送多少帧n_biterror = 0; % 错误的数据n_bitdata = 0; % 一共发送了多少数据n_packeterror = 0; % 有多少错误帧n_packetdata = 0; % 发送了多少帧for ii = 1:nloop% 生成一帧数据,串并转换,并QPSK,生成一帧frame_FDserial = randi([0 1], 1, Nk * Nframe * M);% 发送的是bitframe_FDparallel = reshape(frame_FDserial, Nk, Nframe * M); % 串并转换if M==1frame_mod = BPSKMod(frame_FDparallel, Nk, Nframe); % BPSK调制elseif M==2frame_mod = QPSKMod(frame_FDparallel, Nk, Nframe); % QPSK调制end% IFFTpower_FT = sum(abs(frame_mod(:)).^2) / (Nk * Nframe);% 计算下IFFT前的能量,FT表示频域frame_mod_shift = ifftshift(frame_mod); % 频域归零frame_ifft = ifft(frame_mod_shift, Nfft); % ifftpower_TD = sum(sum(abs(frame_ifft).^2)) / Nk / Nframe; % 计算下IFFT前的能量,DT表示时域% 添加保护间隔frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP"); % 添加保护间隔% 并串转换frame_TDserial = reshape(frame_withGI, 1, Nsym * Nframe);x = 1:1:160;% 加性白高斯噪声信道         power_TDserial = sum(abs(frame_TDserial).^2) / length(frame_TDserial); % 计算发送序列的能量EsN0 = EbN0 + 10 * log10(M); % 根据信噪比计算Es/N0(dB)噪声能量,幅值,然后加在信号上N0 = power_TDserial / (10^(EsN0 / 10));noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1i * randn(size(frame_TDserial)));frame_recieved = frame_TDserial + noise_msg;% 接收端,串并转换frame_recieved_parallel = reshape(frame_recieved, Nsym, Nframe);% 去GIframe_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);% FFTframe_recieved_FD_shift = fft(frame_noGI, Nfft);frame_recieved_FD = fftshift(frame_recieved_FD_shift);if M==1% BPSK解调frame_demod = BPSKDemod(frame_recieved_FD, Nk, Nframe);elseif M==2% QPSK解调frame_demod = QPSKDemod(frame_recieved_FD, Nk, Nframe);end% 并串转换frame_output = reshape(frame_demod, 1, Nk * Nframe * M);% 计算errorn_biterror_tmp = sum(abs(frame_output - frame_FDserial));n_bitdata_tmp = length(frame_FDserial);n_biterror = n_biterror + n_biterror_tmp;n_bitdata = n_bitdata + n_bitdata_tmp;if n_biterror_tmp ~= 0n_packeterror = n_packeterror + 1;endn_packetdata = n_packetdata + 1;end% 计算在当前信噪比下的误码率per = n_packeterror / n_packetdata;ber = n_biterror / n_bitdata;bers(kk) = ber;fprintf('%f\t%e\t%e\t%d\t\n', EbN0, ber, per, nloop);
endsemilogy(EbN0s, bers, '-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
if M==1legend('BPSK实验曲线');
elselegend('QPSK实验曲线');
endfunction outs = QPSKMod(input_data,nk,nframe,m)
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*M)
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% m: 调制数
% 输出
% outs: (nk,nframe),输出a+bi
% out_coss:(nk,nframe),输出实部
% out_sins:(nk,nframe),输出虚部if nargin < 4                   % 设置默认值m = 2;
endouts = zeros(nk,nframe);    % 初始化
out_cos = zeros(nk,nframe);
out_sin = zeros(nk,nframe);input_data_pn = 2*input_data - 1;     % 把0,1映射到-1,1
A = 1/sqrt(2);                        % 归一化幅值out_cos((1:nk),(1:nframe)) = input_data_pn((1:nk), (1:2:2*nframe-1)) .* A;    % 每次使用两列
out_sin((1:nk),(1:nframe)) = input_data_pn((1:nk), ((2:2:2*nframe))) .* A;outs = out_cos + out_sin * 1j;
endfunction outputs = QPSKDemod(input_data,nk,nframe)
% 输入
% input_data: (Nk, Nframe), 一个频域的复数,会被拆开解调
% nk: 频域并联
% nframe: 一帧包含符号数
% 输出
% outputs:(Nk, 2*Nframe), 解调后,多出一倍,全是01
outputs = zeros(nk,2*nframe);
A = 1/sqrt(2); 
input_data = input_data ./ A;
outputs((1:nk),(1:2:2*nframe-1)) = real(input_data((1:nk),(1:nframe)))>=0;
outputs((1:nk),(2:2:2*nframe)) = imag(input_data((1:nk),(1:nframe)))>=0;endfunction outs = BPSKMod(input_data,nk,nframe,m)
% BPSK调制函数
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*M)
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% m: 调制数,默认值为1
% 输出
% outs: (nk,nframe),输出复数
A = 1/sqrt(2);    % 归一化幅值
outs = input_data * 2 - 1;  % 将二进制0/1映射为复数-1/1
outs = A * outs;  % 乘以归一化幅值
endfunction outputs = BPSKDemod(input_data,nk,nframe)
% BPSK解调函数
% 输入
% input_data: (Nk, Nframe), 一个频域的复数
% nk: 频域并联
% nframe: 一帧包含符号数
% 输出
% outputs:(Nk, Nframe), 解调后的二进制数据
outputs = real(input_data) >= 0;  % 判断实部是否大于等于0,大于等于0表示1,小于0表示0
endfunction output_TD = AddGI(input_TD, nfft, nGI, nframe, type_GI)
if type_GI=="CP"    % 实现CPoutput_TD = [input_TD(nfft-nGI+1:nfft, :); input_TD(1:nfft, :)];
elseif type_GI=="ZP" % 实现ZPoutput_TD = [zeros(nGI,nframe); input_TD(1:nfft, :)];
end
end
function output_TD = RemoveGI(input_TD,nfft,nGI)
% 输入
% input_TD: (Nsym,Nframe)输入的并联时域数据
% nfft:fft长度
% nGI: GI长度
% 输出
% output_TD: (Nfft,Nframe)去掉GI后的并联时域数据output_TD = input_TD(nGI+1:nfft+nGI,:);
end

在这里插入图片描述

1.2 QAM

M = 16; % 调制符号所含比特(改为4:4QAM,16:16QAM,32:32QAM)

%% 设置参数
clear;clc;
Nk = 128; % 子载波个数
Nfft = 128; % fft长度
Nframe = 6; % 一帧中有几个OFDM符号
M = 16; % 调制符号所含比特(改为4:4QAM,16:16QAM,32:32QAM)
SR = 250000; % 符号速率
BR = SR * log2(M); % 比特率(根据调制方式计算比特率)
NGI = 32; % 保护间隔长度
EbN0s = 0:1:12; % 信噪比
Nsym = Nfft + NGI; % 系统长度
bers = zeros(1, length(EbN0s));
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体for kk = 1:length(EbN0s)% rng('default')          % 初始化随机种子EbN0 = EbN0s(kk);nloop = 10000; % 发送多少帧n_biterror = 0; % 错误的数据n_bitdata = 0; % 一共发送了多少数据n_packeterror = 0; % 有多少错误帧n_packetdata = 0; % 发送了多少帧for ii = 1:nloop% 生成一帧数据,串并转换,并QPSK,生成一帧frame_FDserial = randi([0 1], 1, Nk * Nframe * log2(M));% 发送的是bit(根据M修改生成的比特数)frame_FDparallel = reshape(frame_FDserial, Nk, Nframe * log2(M)); % 串并转换frame_mod = QAMMod(frame_FDparallel, Nk, Nframe, M); %调制(改为QAM调制)% IFFTpower_FT = sum(abs(frame_mod(:)).^2) / (Nk * Nframe);% 计算下IFFT前的能量,FT表示频域frame_mod_shift = ifftshift(frame_mod); % 频域归零frame_ifft = ifft(frame_mod_shift, Nfft); % ifftpower_TD = sum(sum(abs(frame_ifft).^2)) / Nk / Nframe; % 计算下IFFT前的能量,DT表示时域% 添加保护间隔frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP"); % 添加保护间隔% 并串转换frame_TDserial = reshape(frame_withGI, 1, Nsym * Nframe* log2(M));x = 1:1:160;% Channel         power_TDserial = sum(abs(frame_TDserial).^2) / length(frame_TDserial); % 计算发送序列的能量EsN0 = EbN0 + 10 * log10(log2(M)); % 根据信噪比计算Es/N0(dB)噪声能量,幅值,然后加在信号上N0 = power_TDserial / (10^(EsN0 / 10));noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1i * randn(size(frame_TDserial)));frame_recieved = frame_TDserial + noise_msg;% 接收端,串并转换frame_recieved_parallel = reshape(frame_recieved, Nsym, Nframe* log2(M));% 去GIframe_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);% FFTframe_recieved_FD_shift = fft(frame_noGI, Nfft);frame_recieved_FD = fftshift(frame_recieved_FD_shift);% QPSK解调frame_demod = QAMDemod(frame_recieved_FD, Nk, Nframe, M); %改为QAM解调% 并串转换frame_output = reshape(frame_demod, 1, Nk * Nframe * log2(M)); %修改输出比特数% 计算errorn_biterror_tmp = sum(abs(frame_output - frame_FDserial));n_bitdata_tmp = length(frame_FDserial);n_biterror = n_biterror + n_biterror_tmp;n_bitdata = n_bitdata + n_bitdata_tmp;if n_biterror_tmp ~= 0n_packeterror = n_packeterror + 1;endn_packetdata = n_packetdata + 1;end% 计算在当前信噪比下的误码率per = n_packeterror / n_packetdata;ber = n_biterror / n_bitdata;bers(kk) = ber;fprintf('%f\t%e\t%e\t%d\t\n', EbN0, ber, per, nloop);
endsemilogy(EbN0s, bers, '-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
legend(strcat(num2str(M),'QAM实验曲线'));function outs = QAMMod(input_data,nk,nframe,M)
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*log2(M))
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% M: 调制数
% 输出
% outs: (nk,nframe),输出a+bi
% out_coss:(nk,nframe),输出实部
% out_sins:(nk,nframe),输出虚部if nargin < 4                   % 设置默认值M = 4; % 默认为4QAM
end% 将输入二进制数据映射成QAM符号
symbols = qammod(input_data, M);% 将QAM符号按照OFDM格式进行串并转换
outs = reshape(symbols, nk, nframe* log2(M));
endfunction outputs = QAMDemod(input_data,nk,nframe,M)
% 输入
% input_data: (Nk, Nframe), 一个频域的复数,会被拆开解调
% nk: 频域并联
% nframe: 一帧包含符号数
% M: 调制数
% 输出
% outputs:(Nk, Nframe*log2(M)), 解调后的比特流if nargin < 4                   % 设置默认值M = 4; % 默认为4QAM
end% 将输入QAM符号按照OFDM格式进行并串转换
symbols = input_data(:);% 将QAM符号解调为二进制比特流
outputs = qamdemod(symbols, M);
endfunction output_TD = AddGI(input_TD, nfft, nGI, nframe, type_GI)
if type_GI=="CP"    % 实现CPoutput_TD = [input_TD(nfft-nGI+1:nfft, :); input_TD(1:nfft, :)];
elseif type_GI=="ZP" % 实现ZPoutput_TD = [zeros(nGI,nframe); input_TD(1:nfft, :)];
end
endfunction output_TD = RemoveGI(input_TD,nfft,nGI)
% 输入
% input_TD: (Nsym,Nframe)输入的并联时域数据
% nfft:fft长度
% nGI: GI长度
% 输出
% output_TD: (Nfft,Nframe)去掉GI后的并联时域数据output_TD = input_TD(nGI+1:nfft+nGI,:);
end

在这里插入图片描述

2 瑞利衰落信道之TDL信道

时延抽头延迟线(TDL,Tap Delay Line)信道是一种简化的多径模型,用于表示无线通道在特定延迟时间内的衰减特性。该模型通过一系列的时变复数增益,也称为"抽头"来表示信号经不同路径传播后的相位变化和衰减。在给定的TDL模型中,每个抽头都对应着一个特定的时延和相应的平均功率衰减。

信道的数学模型可以表示为:
y ( t ) = ∑ i = 1 N h i ⋅ x ( t − τ i ) + n ( t ) y(t) = \sum_{i=1}^{N} h_i \cdot x(t - \tau_i) + n(t) y(t)=i=1Nhix(tτi)+n(t)

其中,

  • ( y(t) ) 是接收信号,
  • ( x(t) ) 是发送信号,
  • ( h_i ) 是第 ( i ) 个抽头的复数增益,反映了信号在抽头 ( i ) 上的衰减和相位变化 h i h_i hi 取以 $ h_i = \sqrt{\text{PowerTDL}_i} \cdot \text{Rayleigh fading factor}$,并且 ( h ) 数组中的非零位置由TDL抽头的时延决定,则 $\text{Delay}[i]+1) = h_i $
  • $ \tau_i$ 是第 i 个抽头的时间延迟,
  • N是总抽头数,
  • n(t) 是添加到通道输出的高斯白噪声。

在给定的信道模型中,PowerTDL_dB定义了各抽头的平均功率衰减,单位为分贝(dB),Delay数组定义了各抽头相对于首个抽头的时延,单位为符号周期。这两个数组被用来计算PowerTDL,即各抽头的功率,并转换为线性单位。通过这些值,以及Rayleigh衰减模型,可以生成模拟多径效应的复数信道响应。

2.1 BPSK和QPSK

%% 设置参数
clear;clc;
Nk = 128;           % 子载波个数
Nfft = 128;          % fft长度
Nframe = 6;         % 一帧中有几个OFDM符号
M = 1;              % 调制符号所含比特
SR = 250000;        % 符号速率
BR = SR .* M;       % 比特率
NGI = 32;           % 保护间隔长度
EbN0s = 0:2:20;      % 信噪比
Nsym = Nfft+NGI;    % 系统长度
bers = zeros(1,length(EbN0s));  % 误码率储存数组
PowerTDL_dB = [0 -8 -17 -21 -25];   % TDL中信道抽头的功率,dB为单位
Delay = [0 3 5 6 8];                % TDL中信道时延
PowerTDL = 10.^(PowerTDL_dB/10);    % TDL中信道抽头的功率
Nchannel=length(PowerTDL_dB);       % 信道抽头数
Tau_maxTDL = Delay(end)+1;          % 最大时延除以帧长,就是归一化的最大时延
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体for kk = 1:length(EbN0s)% rng('default')          % 初始化随机种子EbN0 = EbN0s(kk);nloop = 10000;          % 发送多少帧n_biterror = 0;         % 错误的数据n_bitdata = 0;          % 一共发送了多少数据n_packeterror = 0;      % 有多少错误帧n_packetdata = 0;       % 发送了多少帧for ii = 1:nloop
%--------------------------发射端-------------------------------%% 生成一帧数据,串并转换,并QPSK,生成一帧frame_FDserial = randi([0 1], 1, Nk * Nframe * M);% 发送的是bitframe_FDparallel = reshape(frame_FDserial,Nk,Nframe*M);% 串并转换if M==1frame_mod = BPSKMod(frame_FDparallel, Nk, Nframe); % BPSK调制elseif M==2frame_mod = QPSKMod(frame_FDparallel, Nk, Nframe); % QPSK调制end% IFFTpower_FT = sum(sum(abs(frame_mod).^2))/Nk/Nframe;  % 计算下IFFT前的能量,FT表示频域frame_mod_shift = ifftshift(frame_mod);         % 频域归零frame_ifft = ifft(frame_mod_shift, Nfft);             % ifft% frame_ifft = ifft(frame_mod, Nfft);power_TD = sum(sum(abs(frame_ifft).^2))/Nk/Nframe; % 计算下IFFT前的能量,DT表示时域% 添加保护间隔frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP");  % 添加保护间隔% 并串转换frame_TDserial = reshape(frame_withGI,1,Nsym*Nframe);
%--------------------------Channel-------------------------------%% 信号先经历衰落channel = Rayleigh_model(Nchannel, PowerTDL);h = zeros(1, Tau_maxTDL);h(Delay+1) = channel;frame_conv = conv(frame_TDserial, h);frame_fading = frame_conv(:,1:length(frame_TDserial));        % 看似是线性卷积,实际上由于CP变成了循环卷积% 添加高斯白噪声power_TDserial = sum(abs(frame_TDserial).^2)/Nk/Nframe;     EsN0 = EbN0 + 10*log10(M);                                  % 根据信噪比计算噪声能量,幅值,然后加在信号上N0 = power_TDserial .* 10.^(-EsN0/10);noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));frame_recieved = frame_fading + noise_msg;
%--------------------------接收端-------------------------------%% 接收端,串并转换frame_recieved_parallel = reshape(frame_recieved,Nsym,Nframe);% 去GIframe_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);% FFTframe_recieved_FD_shift = fft(frame_noGI, Nfft);frame_recieved_FD = fftshift(frame_recieved_FD_shift);% 信道均衡H = fftshift(fft([h zeros(1, Nfft-Tau_maxTDL)].', Nfft));frame_equalization = frame_recieved_FD ./ repmat(H, 1, Nframe);if M==1% BPSK解调frame_demod = BPSKDemod(frame_equalization, Nk, Nframe);elseif M==2% QPSK解调frame_demod = QPSKDemod(frame_equalization, Nk, Nframe);end% 并串转换frame_output = reshape(frame_demod, 1, Nk*Nframe*M);% 计算errorn_biterror_tmp = sum(abs(frame_output-frame_FDserial));n_bitdata_tmp = length(frame_FDserial);n_biterror = n_biterror + n_biterror_tmp;n_bitdata = n_bitdata + n_bitdata_tmp;if n_biterror_tmp ~= 0n_packeterror = n_packeterror + 1;endn_packetdata = n_packetdata + 1;end% 计算在当前信噪比下的误码率per = n_packeterror/n_packetdata;ber = n_biterror/n_bitdata;bers(kk)=ber;fprintf('%f\t%e\t%e\t%d\t\n',EbN0,ber,per,nloop);
end
%% 画图
semilogy(EbN0s,bers,'-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
% legend('理论曲线','实验曲线');
if M==1legend('BPSK实验曲线');
elselegend('QPSK实验曲线');
endfunction outs = QPSKMod(input_data,nk,nframe,m)
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*M)
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% m: 调制数
% 输出
% outs: (nk,nframe),输出a+bi
% out_coss:(nk,nframe),输出实部
% out_sins:(nk,nframe),输出虚部if nargin < 4                   % 设置默认值m = 2;
endouts = zeros(nk,nframe);    % 初始化
out_cos = zeros(nk,nframe);
out_sin = zeros(nk,nframe);input_data_pn = 2*input_data - 1;     %01映射到-11
A = 1/sqrt(2);                        % 归一化幅值out_cos((1:nk),(1:nframe)) = input_data_pn((1:nk), (1:2:2*nframe-1)) .* A;    % 每次使用两列
out_sin((1:nk),(1:nframe)) = input_data_pn((1:nk), ((2:2:2*nframe))) .* A;outs = out_cos + out_sin * 1j;
endfunction outputs = QPSKDemod(input_data,nk,nframe)
% 输入
% input_data: (Nk, Nframe), 一个频域的复数,会被拆开解调
% nk: 频域并联
% nframe: 一帧包含符号数
% 输出
% outputs:(Nk, 2*Nframe), 解调后,多出一倍,全是01
outputs = zeros(nk,2*nframe);
A = 1/sqrt(2); 
input_data = input_data ./ A;
outputs((1:nk),(1:2:2*nframe-1)) = real(input_data((1:nk),(1:nframe)))>=0;
outputs((1:nk),(2:2:2*nframe)) = imag(input_data((1:nk),(1:nframe)))>=0;endfunction outs = BPSKMod(input_data,nk,nframe,m)
% BPSK调制函数
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*M)
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% m: 调制数,默认值为1
% 输出
% outs: (nk,nframe),输出复数
A = 1/sqrt(2);    % 归一化幅值
outs = input_data * 2 - 1;  % 将二进制0/1映射为复数-1/1
outs = A * outs;  % 乘以归一化幅值
endfunction outputs = BPSKDemod(input_data,nk,nframe)
% BPSK解调函数
% 输入
% input_data: (Nk, Nframe), 一个频域的复数
% nk: 频域并联
% nframe: 一帧包含符号数
% 输出
% outputs:(Nk, Nframe), 解调后的二进制数据
outputs = real(input_data) >= 0;  % 判断实部是否大于等于0,大于等于0表示1,小于0表示0
end
function output_TD = AddGI(input_TD, nfft, nGI, nframe, type_GI)
if type_GI=="CP"    % 实现CPoutput_TD = [input_TD(nfft-nGI+1:nfft, :); input_TD(1:nfft, :)];
elseif type_GI=="ZP" % 实现ZPoutput_TD = [zeros(nGI,nframe); input_TD(1:nfft, :)];
end
endfunction output_TD = RemoveGI(input_TD,nfft,nGI)
% 输入
% input_TD: (Nsym,Nframe)输入的并联时域数据
% nfft:fft长度
% nGI: GI长度
% 输出
% output_TD: (Nfft,Nframe)去掉GI后的并联时域数据output_TD = input_TD(nGI+1:nfft+nGI,:);
end
function H=Rayleigh_model(nchannel, power_channel)
% 瑞利衰落信道
% 输入
% nchannel: 多径信道的个数
% power_channel:(1, nchannel),每一个信道的功率
% 输出
% H:(1, nchannel),一个瑞利信道,符合高斯分布的nchannel个随机数,代表着衰落
H = (randn(1,nchannel)+1j*randn(1,nchannel)).*sqrt(power_channel/2);
% 功率除以二的原因是瑞利分布的E(x^2)=2\sigma^2
end

在这里插入图片描述

2.2 QAM

%% 设置参数
clear;clc;
Nk = 128; % 子载波个数
Nfft = 128; % fft长度
Nframe = 6; % 一帧中有几个OFDM符号
M = 4; % 调制符号所含比特(改为4:4QAM,16:16QAM,32:32:QAM)
SR = 250000; % 符号速率
BR = SR * log2(M); % 比特率(根据调制方式计算比特率)
NGI = 32; % 保护间隔长度
EbN0s = 0:1:12; % 信噪比
Nsym = Nfft + NGI; % 系统长度
bers = zeros(1, length(EbN0s));PowerTDL_dB = [0 -8 -17 -21 -25];   % TDL中信道抽头的功率,dB为单位
Delay = [0 3 5 6 8];                % TDL中信道时延
PowerTDL = 10.^(PowerTDL_dB/10);    % TDL中信道抽头的功率
Nchannel=length(PowerTDL_dB);       % 信道抽头数
Tau_maxTDL = Delay(end)+1;          % 最大时延除以帧长,就是归一化的最大时延
fprintf('EbN0 \t \t ber\t\t\t per\t\t\t nloop \t\t \n');
%% 函数主体for kk = 1:length(EbN0s)% rng('default')          % 初始化随机种子EbN0 = EbN0s(kk);nloop = 10000; % 发送多少帧n_biterror = 0; % 错误的数据n_bitdata = 0; % 一共发送了多少数据n_packeterror = 0; % 有多少错误帧n_packetdata = 0; % 发送了多少帧for ii = 1:nloop% 生成一帧数据,串并转换,并QPSK,生成一帧frame_FDserial = randi([0 1], 1, Nk * Nframe * log2(M));% 发送的是bit(根据M修改生成的比特数)frame_FDparallel = reshape(frame_FDserial, Nk, Nframe * log2(M)); % 串并转换frame_mod = QAMMod(frame_FDparallel, Nk, Nframe, M); %调制(改为QAM调制)% IFFTpower_FT = sum(abs(frame_mod(:)).^2) / (Nk * Nframe);% 计算下IFFT前的能量,FT表示频域frame_mod_shift = ifftshift(frame_mod); % 频域归零frame_ifft = ifft(frame_mod_shift, Nfft); % ifftpower_TD = sum(sum(abs(frame_ifft).^2)) / Nk / Nframe; % 计算下IFFT前的能量,DT表示时域% 添加保护间隔frame_withGI = AddGI(frame_ifft, Nfft, NGI, Nframe, "CP"); % 添加保护间隔% 并串转换frame_TDserial = reshape(frame_withGI, 1, Nsym * Nframe* log2(M));% Channel         channel = Rayleigh_model(Nchannel, PowerTDL);h = zeros(1, Tau_maxTDL);h(Delay+1) = channel;frame_conv = conv(frame_TDserial, h);frame_fading = frame_conv(:,1:length(frame_TDserial));        % 看似是线性卷积,实际上由于CP变成了循环卷积% 添加高斯白噪声power_TDserial = sum(abs(frame_TDserial).^2)/Nk/Nframe;     EsN0 = EbN0 + 10*log10(M);                                  % 根据信噪比计算噪声能量,幅值,然后加在信号上N0 = power_TDserial .* 10.^(-EsN0/10);noise_msg = sqrt(N0 / 2) .* (randn(size(frame_TDserial)) + 1j * randn(size(frame_TDserial)));frame_recieved = frame_fading + noise_msg;% 接收端,串并转换frame_recieved_parallel = reshape(frame_recieved, Nsym, Nframe* log2(M));% 去GIframe_noGI = RemoveGI(frame_recieved_parallel, Nfft, NGI);% FFTframe_recieved_FD_shift = fft(frame_noGI, Nfft);frame_recieved_FD = fftshift(frame_recieved_FD_shift);% 信道均衡H = fftshift(fft([h zeros(1, Nfft-Tau_maxTDL)].', Nfft));frame_equalization = frame_recieved_FD ./ repmat(H, 1, Nframe* log2(M));% QPSK解调frame_demod = QAMDemod(frame_equalization, Nk, Nframe, M); %改为QAM解调% 并串转换frame_output = reshape(frame_demod, 1, Nk * Nframe * log2(M)); %修改输出比特数% 计算errorn_biterror_tmp = sum(abs(frame_output - frame_FDserial));n_bitdata_tmp = length(frame_FDserial);n_biterror = n_biterror + n_biterror_tmp;n_bitdata = n_bitdata + n_bitdata_tmp;if n_biterror_tmp ~= 0n_packeterror = n_packeterror + 1;endn_packetdata = n_packetdata + 1;end% 计算在当前信噪比下的误码率per = n_packeterror / n_packetdata;ber = n_biterror / n_bitdata;bers(kk) = ber;fprintf('%f\t%e\t%e\t%d\t\n', EbN0, ber, per, nloop);
endsemilogy(EbN0s, bers, '-+');
xlabel('比特信噪比');
ylabel('误码率');
title('不同信噪比下误码率仿真曲线');
legend(strcat(num2str(M),'QAM实验曲线'));function outs = QAMMod(input_data,nk,nframe,M)
% 输入
% input_data: 待数字调制的输入数据(Nk,Nframe*log2(M))
% nk: 子载波个数,也就是并联个数
% nframe: 一帧中包含多少OFDM符号
% M: 调制数
% 输出
% outs: (nk,nframe),输出a+bi
% out_coss:(nk,nframe),输出实部
% out_sins:(nk,nframe),输出虚部if nargin < 4                   % 设置默认值M = 4; % 默认为4QAM
end% 将输入二进制数据映射成QAM符号
symbols = qammod(input_data, M);% 将QAM符号按照OFDM格式进行串并转换
outs = reshape(symbols, nk, nframe* log2(M));
endfunction outputs = QAMDemod(input_data,nk,nframe,M)
% 输入
% input_data: (Nk, Nframe), 一个频域的复数,会被拆开解调
% nk: 频域并联
% nframe: 一帧包含符号数
% M: 调制数
% 输出
% outputs:(Nk, Nframe*log2(M)), 解调后的比特流if nargin < 4                   % 设置默认值M = 4; % 默认为4QAM
end% 将输入QAM符号按照OFDM格式进行并串转换
symbols = input_data(:);% 将QAM符号解调为二进制比特流
outputs = qamdemod(symbols, M);
endfunction output_TD = AddGI(input_TD, nfft, nGI, nframe, type_GI)
if type_GI=="CP"    % 实现CPoutput_TD = [input_TD(nfft-nGI+1:nfft, :); input_TD(1:nfft, :)];
elseif type_GI=="ZP" % 实现ZPoutput_TD = [zeros(nGI,nframe); input_TD(1:nfft, :)];
end
end
function output_TD = RemoveGI(input_TD,nfft,nGI)
% 输入
% input_TD: (Nsym,Nframe)输入的并联时域数据
% nfft:fft长度
% nGI: GI长度
% 输出
% output_TD: (Nfft,Nframe)去掉GI后的并联时域数据output_TD = input_TD(nGI+1:nfft+nGI,:);
end
function H=Rayleigh_model(nchannel, power_channel)
% 瑞利衰落信道
% 输入
% nchannel: 多径信道的个数
% power_channel:(1, nchannel),每一个信道的功率
% 输出
% H:(1, nchannel),一个瑞利信道,符合高斯分布的nchannel个随机数,代表着衰落
H = (randn(1,nchannel)+1j*randn(1,nchannel)).*sqrt(power_channel/2);
% 功率除以二的原因是瑞利分布的E(x^2)=2\sigma^2
end

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/443673.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RK3588平台开发系列讲解(视频篇)RKMedia的RGA模块

文章目录 一、RGA模块功能概述二、RGA模块支持的图像格式三、RGA模块的通道数四、RGA模块API调用流程五、RGA模块实现图像裁剪六、RGA模块实现图像旋转七、RGA模块实现图像格式转换(色彩空间转换)八、RGA模块实现图像缩放沉淀、分享、成长,让自己和他人都能有所收获!😄 �…

VUE3+elementPlus 之 Form表单校验器 之 字符长度校验

需求&#xff1a;校验字符长度&#xff0c;超过后仍可输入&#xff0c;error提示录入字符数与限制字符数 校验字符长度&#xff1a; /*** 检验文字输入区的长度* param {*} rule 输入框的rule 对象&#xff0c;field&#xff1a;字段名称* param {*} value …

【数据结构】(分治策略)中位数的查询和最接近点对问题

中位数查询&#xff1a; 寻找一组字符串中第k小的数&#xff0c;返回其值和下标。 不可以有重复值&#xff08;在缩小规模的时候&#xff0c;会导致程序死循环&#xff09; 相对位置的转换体现了分治策略的思想。> 划分函数 int partition(int *nums,int left, int rig…

报错 Cannot read properties of undefined(reading‘addEventListener‘)如何解决

我在制作项目中遇到了一个问题&#xff0c;给大家分享一下&#xff0c;如下图&#xff1a; 问题&#xff1a;这是我给一个input输入框绑定的监听事件出现的报错 翻译&#xff1a;无法读取未定义的属性(读取 addEventListener ) 错误原因&#xff1a;js中操作的dom元素的函数方…

Spring Boot 中操作 Bean 的生命周期

1.InitializingBean和DisposableBean InitializingBean接口提供了afterPropertiesSet方法&#xff0c;用于在bean的属性设置好之后调用&#xff1b; DisposableBean接口提供了destroy方法&#xff0c;用于在bean销毁之后调用&#xff1b; public class TestComponent implem…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之DatePicker组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之DatePicker组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、DatePicker组件 日期选择器组件&#xff0c;用于根据指定日期范围创建日期滑…

SpringBoot 使用WebSocket功能

实现步骤&#xff1a; 1.导入WebSocket坐标。 在pom.xml中增加依赖项&#xff1a; <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency>2.编写WebSocket配…

【Web前端实操21】商城官网_白色导航

今日份实现白色导航栏部分&#xff0c;也就是第三部分&#xff0c;效果如图中划线所示&#xff1a; 本次实现代码如之前的全局样式不再赘述&#xff0c;如有需要可以去我博客的Web前端实操19或者20自行查看。 本次主要更新mi.css和index.htm。 实现导航栏所需要的CSS样…

【云原生】docker安全与https加密的超文本传输协议CA证书生成

目录 一、docker安全 二、http与https的区别 三、为什么要使用 SSL 证书&#xff1f; 四、https证书认证的过程 https单向认证的访问流程 https双向认证的访问流程 五、如何获取证书&#xff1f; 六、实操获取证书并验证 1、通过阿里云获取证书 2、通过mkcert获取证书…

09. BI - 数据可视化,如何进行基本图形绘制

本文为 「茶桁的 AI 秘籍 - BI 篇 第 09 篇」 文章目录 EDA 作用可视化视图Python 进行可视化subplot Hi&#xff0c;你好。我是茶桁。 今天想给大家讲的是关于数据的可视化。在工作中很多时候我们不光要计算结果&#xff0c;还要把结果呈现出来&#xff0c;最好是一种图形化的…

uniapp基于Android平台的校园生活服务交流论坛系统(二手,失物招领 -跑腿) 小程序hbuiderx

作为一款APP的校园论坛系统&#xff0c;面向的是大多数学者&#xff0c;软件的界面设计简洁清晰&#xff0c;用户可轻松掌握使用技巧。在调查之后&#xff0c;获得用户以下需求&#xff1a; &#xff08;1&#xff09;用户注册登录后&#xff0c;可进入系统解锁更多功能&#x…

「数据结构」1.初识泛型

&#x1f387;个人主页&#xff1a;Ice_Sugar_7 &#x1f387;所属专栏&#xff1a;Java数据结构 &#x1f387;欢迎点赞收藏加关注哦&#xff01; 初识泛型 &#x1f349;前言&#x1f349;包装类&#x1f34c;装箱&拆箱 &#x1f349;泛型&#x1f34c;擦除机制&#x1f…