目标检测及相关算法介绍

文章目录

  • 目标检测介绍
  • 目标检测算法分类
  • 目标检测算法模型组成
  • 经典目标检测论文

在这里插入图片描述

目标检测介绍

目标检测是计算机视觉领域中的一项重要任务,旨在识别图像或视频中的特定对象的位置并将其与不同类别中的对象进行分类。与图像分类任务不同,目标检测不仅需要识别出图像中的对象,还需要确定这些对象在图像中的准确位置,同时通过矩形边界框(Bounding Box)来表示。在自动驾驶领域,目标检测技术具有重要的应用,帮助自动驾驶系统识别和理解道路上的环境,从而做出适当的驾驶决策。以下是目标检测在自动驾驶领域的一些主要应用:

  • 行人检测: 目标检测可用于识别道路上的行人,包括行人的位置和动态行为。这对于确保行人的安全以及避免与行人的碰撞非常重要。
  • 车辆检测: 自动驾驶车辆需要准确地检测其他车辆的位置、速度和行驶方向,以便在交通中做出正确的驾驶决策,如超车、跟车等。
  • 交通信号灯和标志检测: 目标检测可以帮助车辆识别交通信号灯的状态(红灯、绿灯、黄灯)以及道路上的交通标志,从而调整行驶速度和行为。
  • 道路边缘和障碍物检测: 自动驾驶车辆需要检测道路边缘和障碍物,以保持在正确的车道内并避免与障碍物发生碰撞。
  • 自动驾驶中的人体姿态估计: 目标检测可以用于估计驾驶员或乘客的身体姿态,以便自动驾驶系统可以更好地理解车内的情况。
  • 环境感知和感知预测: 目标检测可以帮助自动驾驶系统感知周围环境中的不同目标,并预测它们的行为和轨迹,以做出相应的驾驶决策。
  • 道路几何检测: 目标检测可以用于检测道路的几何特征,如车道线和路缘石,以提供更准确的定位和导航信息。
  • 自动泊车: 在自动泊车场景中,目标检测可用于检测停车位的位置和大小,以及其他可能的障碍物,以确保安全的泊车过程。

目标检测算法分类

目标检测算法可以有多种划分方法。按照stage个数划分,可以分为:one-stage(一阶段)算法和two-stage(两阶段)算法,按照是否需要预定义anchor划分,也可分为anchor-based和anchor-free。以下是按照stage个数进行划分的案例:

  • one-stage代表算法: RetinaNet、YOLO系列、FCOS、SSD等。

  • two-stage代表算法: R-CNN、SPPNet、Fast R-CNN、Faster R-CNN、Mask R-CNN、Cascade R-CNN、Sparse R-CNN等。

  • 理解: two-stage算法会先①生成一个候选区域(region proposal),然后②利用CNN对每个候选区域进行分类;而one-stage算法则一步到位,直接输出每个候选区域及对应的分类结果。

  • Anchor-Based(基于锚点的方法):Faster R-CNN、YOLO系列、SSD、Cascade R-CNN、RetinaNet

  • Anchor-Free(无锚点方法):CenterNet、FCOS、CornerNet

目标检测算法模型组成

目标检测算法训练阶段的模型主要由以下几个部分组成,分别是:Backbone、Neck、Head、Enhance、BBox Assigner、BBox Sampler、BBox Encoder、 Loss组成。

  • Backbone: Backbone(主干网络)的主要作用是特征提取。常见的Backbone有:ResNet、ResNext、Res2Net、ResNeSt、DarkNet、HRNet、RegNet等。

  • Neck: Neck可以认为是Backbone和Head的连接层,主要负责对Backbone提取的的特征进行高效融合和增强,能够对输入的单尺度或者多尺度特征进行融合、增强输出等。常见的Neck有:FPN、BFP、RFP、PAFPN、NAS_FPN、HRFPN等。

  • Head: 目标检测算法输出一般包括分类(比如:人、汽车等)和框坐标回归(标记"人"的矩形框对应的坐标)两个分支。

  • Enhance: Enhance是即插即用、能够对特征进行增强的模块。常用的Enhance模块有:SPP、ASPP、RFB、Dropout、Dropblock、DCN以及各种注意力模块SeNet、Non_local、CBA等。

  • BBox Assigner: 待更新

  • BBox Sampler: 待更新

  • BBox Encoder: 待更新

  • Loss: Loss(损失)通常分为分类Loss和回归Loss,主要对Head网络输出的预测值和BBox encoder得到的targets进行梯度下降迭代训练。常见的分类Loss有:BCELoss、CELoss、FocalLoss、QualityFocalLoss、VarifocalLoss、GaussianFocalLoss、GHMC、OHEM等;常见的回归Loss有:L1/L2 Loss、SmoothL1Loss、BalancedL1Loss、DistributionFocalLoss、GHMR、IoU/BoundeIoU/GIoU/CIoU Loss等。

  • 训练技巧: 目标检测算法的训练技巧非常多,常说的调参很大一部分工作都是在设置这部分超参。这部分内容比较杂乱,很难做到完全统一,目前主流的tricks有:大batch训练、分布式训练和同步BN、Warm Up、余弦学习率、多尺度训练、模型EMA、知识蒸馏、Label Smoothing、对抗训练、随机权重平均、遗传算法自动超参数搜索等。

  • 图像数据增强: 图像数据增强旨在通过对原始图像进行一系列变换和修改,从而生成更多、多样化的训练样本。常见的数据增强方法有:常规的图像数据增强(翻转、旋转、平移、缩放、裁剪、色彩变换、噪声添加等)、AutoAug、RandAug、MixUp/CutMix、Mosaic、Stitcher等。

经典目标检测论文

  • R-CNN (Region-based Convolutional Neural Networks): [2014-CVPR] Rich feature hierarchies for accurate object detection and semantic segmentation. [pdf]
  • Fast R-CNN: [2015-ICCV] Fast R-CNN. [pdf]
  • Faster R-CNN: [2015-NeurIPS] Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks [pdf]
  • YOLO (You Only Look Once): [2016-CVPR] You Only Look Once: Unified, Real-Time Object Detection. [pdf]
  • SSD (Single Shot MultiBox Detector): [2016-ECCV] SSD: Single Shot MultiBox Detector. [pdf]
  • RetinaNet: [2017-CVPR] Focal Loss for Dense Object Detection. [pdf]
  • EfficientDet: [2020-CVPR] EfficientDet: Scalable and Efficient Object Detection. [pdf]
  • Cascade R-CNN: [2018-CVPR] Cascade R-CNN: Delving into High Quality Object Detection [pdf]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453034.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

缓存组件Caffeine的使用

caffeine是一个高性能的缓存组件&#xff0c;在需要缓存数据&#xff0c;但数据量不算太大&#xff0c;不想引入redis的时候&#xff0c;caffeine就是一个不错的选择。可以把caffeine理解为一个简单的redis。 1、导入依赖 <!-- https://mvnrepository.com/artifact/com.git…

QXlsx Qt操作excel(1)

QXlsx 是一个用于处理Excel文件的开源C库。它允许你在你的C应用程序中读取和写入Microsoft Excel文件&#xff08;.xlsx格式&#xff09;。该库支持多种操作&#xff0c;包括创建新的工作簿、读取和写入单元格数据、格式化单元格、以及其他与Excel文件相关的功能。 关于QXlsx的…

车载充电器(OBC)氮化镓(GaN)驱动(高压高功率)设计(第四篇)

上图来自于网络 1、GaN FET概念 GaN FET&#xff0c;全称为Gallium Nitride Field-Effect Transistor&#xff08;氮化镓场效应晶体管&#xff09;&#xff0c;是一种采用氮化镓&#xff08;Gallium Nitride, GaN&#xff09;材料制作的新型功率半导体器件。相较于传统的硅基…

服务器性能监控管理方法及工具

服务器是组织数据中心的主干&#xff0c;无论是优化的用户体验&#xff0c;还是管理良好的资源&#xff0c;服务器都能为您完成所有工作&#xff0c;保持服务器随时可用和可访问对于面向业务的应用程序和服务以最佳水平运行至关重要。 理想的服务器性能需要主动监控物理和虚拟…

2024牛客寒假算法基础集训营1(视频讲解全部题目)

2024牛客寒假算法基础集训营1&#xff08;题目全解&#xff09; ABCDEFGHIJKLM 2024牛客寒假算法基础集训营1&#xff08;视频讲解全部题目&#xff09; A #include<bits/stdc.h> #define endl \n #define deb(x) cout << #x << " " << …

开源节点框架STNodeEditor使用

节点&#xff0c;一般都为树形Tree结构&#xff0c;如TreeNode&#xff0c;XmlNode。 树形结构有其关键属性Parent【父节点】&#xff0c;Children【子节点】 LinkedListNode为链表线性结构&#xff0c;有其关键属性Next【下一个】&#xff0c;Previous【上一个】&#xff0c…

item_get_video-获取视频详情(bili.item_get_video)

B站&#xff08;Bilibili&#xff09;的item_get_video API用于获取视频的详细信息。通过调用该API&#xff0c;您将能够获得视频的基本信息、元数据、播放链接等。这使得开发者可以轻松地将B站视频集成到自己的应用程序或网站中&#xff0c;为用户提供更丰富的内容和更好的体验…

时间序列预测 —— ConvLSTM 模型

时间序列预测 —— ConvLSTM 模型 时间序列预测是一项重要的任务&#xff0c;ConvLSTM&#xff08;卷积长短时记忆网络&#xff09;是深度学习领域中用于处理时序数据的强大工具之一。本文将介绍 ConvLSTM 的理论基础、优缺点&#xff0c;与其他常见时序模型&#xff08;如 LS…

java基本知识详解

八大基本数据类型 java的数据类型可以说很简洁&#xff0c;只有整型&#xff0c;浮点型&#xff0c;字符型&#xff0c;和布尔型四大种&#xff0c;八小种基本类型。 整型 byte&#xff1a;-2^7 ~ 2^7-1&#xff0c;即-128 ~ 127。1字节。 short&#xff1a;-2^15 ~ 2^15-…

Redisson看门狗机制

一、背景 网上redis分布式锁的工具方法&#xff0c;大都满足互斥、防止死锁的特性&#xff0c;有些工具方法会满足可重入特性。如果只满足上述3种特性会有哪些隐患呢&#xff1f;redis分布式锁无法自动续期&#xff0c;比如&#xff0c;一个锁设置了1分钟超时释放&#xff0c;…

leetcode 3.无重复字符的最长字串(滑动窗口) (C++)DAY2

文章目录 1.题目示例提示 2.解答思路3.实现代码结果 4.总结 1.题目 给定一个字符串 s &#xff0c;请你找出其中不含有重复字符的 最长子串 的长度。 示例 示例 1: 输入: s “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”&#xff0c;所以其长度为 3。 示…

专业145+总分420+电子科技大学858信号与系统考研经验电子信息与通信

今年考研各门都相对发挥比较好&#xff0c;总分420&#xff0c;专业858信号与系统145&#xff0c;数学135顺利上岸电子科技大学&#xff0c;应群里很多学弟学妹要求&#xff0c;我总结一下自己的复习经验&#xff0c;希望可以在考研路上&#xff0c;助大家一臂之力。专业课&…