【C++历练之路】二叉搜索树的学习应用及其实现

W...Y的主页 😊 

代码仓库分享💕 


前言🍔:

我们之前学过一些查找关键数据的办法,排序+二分查找。但是这种方法的插入的时间复杂的太高,今天我们来学习一个更好的办法来应对数据查找——二叉搜索树。 

目录

1. 二叉搜索树

1.1 二叉搜索树概念

1.2 二叉搜索树操作 

1.3 二叉搜索树的实现 

1.4 二叉搜索树的应用

1.5 二叉搜索树的性能分析


1. 二叉搜索树

1.1 二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:
若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

它的左右子树也分别为二叉搜索树

1.2 二叉搜索树操作 

int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};

1. 二叉搜索树的查找
a、从根开始比较,查找,比根大则往右边走查找,比根小则往左边走查找。
b、最多查找高度次,走到到空,还没找到,这个值不存在。
2. 二叉搜索树的插入
插入的具体过程如下:
a. 树为空,则直接新增节点,赋值给root指针
b. 树不空,按二叉搜索树性质查找插入位置,插入新节点 

 

1. **二叉搜索树的删除
首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情
况:

a. 要删除的结点无孩子结点
b. 要删除的结点只有左孩子结点
c. 要删除的结点只有右孩子结点
d. 要删除的结点有左、右孩子结点
看起来有待删除节点有4中情况,实际情况a可以与情况b或者c合并起来,因此真正的删除过程
如下:
情况b:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点--直接删除
情况c:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点--直接删除
情况d:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点

中,再来处理该结点的删除问题--替换法删除 

所以我们要进行二叉搜索树的增删查改。

1.3 二叉搜索树的实现 

template<class k>
struct BSTreeNode
{typedef BSTreeNode<k> Node;Node* _left;Node* _right;k _key;BSTreeNode(const k& key):_left(nullptr),_right(nullptr),_key(key){}
};

创建一个树节点的类模板进行封装,const T& data = T()是对_data参数进行匿名构造缺省值,所以它会去调用其自己的默认构造函数。将左右两个指针置空即可。

template<class k>
class BSTree
{
public:typedef BSTreeNode<k> Node;
//使用了强制生成默认构造!!!BSTree() = default;BSTree(const BSTree<k>& t){_root = Copy(t._root);}BSTree<k>& operator=(BSTree<k> t){swap(_root, t._root);return *this;}~BSTree(){Destroy(_root);}bool Insert(const k& key){if (_root == nullptr){_root = new Node(key);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if(cur->_key < key){parent = cur;cur = cur->_right;}else{return false;}}cur = new Node(key);if (parent->_key > key){parent->_left = cur;}else{parent->_right = cur;}return true;}bool Find(const k& key){Node* cur = _root;while (cur){if (cur->_key > key){cur = cur->_left;}else if (cur->_key < key){cur = cur->_right;}else{return true;}}return false;}bool Erase(const k& key){// 如果树为空,删除失败if (nullptr == _root)return false;Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key > key){parent = cur;cur = cur->_left;}else if (cur->_key < key){parent = cur;cur = cur->_right;}else{if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_left){parent->_left = cur->_right;}else{parent->_right = cur->_right;}}delete cur;return true;}else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (parent->_left == cur){parent->_left = cur->_left;}else{parent->_right = cur->_left;}}delete cur;return true;}else{Node* rightminparent = cur;Node* rightmin = cur->_right;while (rightmin->_left){rightminparent = rightmin;rightmin = rightmin->_left;}cur->_key = rightmin->_key;if (rightminparent->_left == rightmin){rightminparent->_left = rightmin->_right;}else{rightminparent->_right = rightmin->_right;}delete rightmin;return true;}}}return false;}void InOrder(){_InOrder(_root);cout << endl;}bool FindR(const k& key){return _FindR(_root, key);}bool InsertR(const k& key){return _InsertR(_root, key);}bool EraseR(const k& key){return _EraseR(_root, key);}
private:void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}Node* Copy(Node* root){if (root == nullptr)return nullptr;Node* newRoot = new Node(root->_key);newRoot->_left = Copy(root->_left);newRoot->_right = Copy(root->_right);return newRoot;}void _InOrder(Node* root){if (root == nullptr){return;}_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}bool _FindR(Node* root, const k& key){if (root == nullptr){return false;}if (root->_key > key){_FindR(root->_left, key);}else if (root->_key < key){_FindR(root->_right, key);}else{return true;}}bool _EraseR(Node*& root, const k& key){if (root == nullptr){return false;}if (root->_key < key){return _EraseR(root->_left, key);}else if (root->_key < key){return _EraseR(root->_right, key);}else{Node* del = root;if (root->_right == nullptr){root = root->_left;}else if (root->_left == nullptr){root = root->_right;}else{Node* rightmin = root->_right;while (root->_left){rightmin = rightmin->_left;}swap(root->_key, rightmin->_key);return _EarseR(root->_right, key);}delete del;return true;}}bool _InsertR(Node*& root, const k& key){if (root == nullptr){root = new Node(key);return true;}if (root->_key < key){return _InsertR(root->_right, key);}else if (root->_key > key){return _InsertR(root->_left, key);}else{return false;}}Node* _root = nullptr;
};

InsertR、FindR、EarseR 函数分别是使用递归的插入、查询、删除。没有R的是其正常的模拟实现。

因为在类的公有层面,我们在主函数时去调用其对应的函数时,其函数隐藏了一个默认参数this指针,所以我们为了去调用时方便,在私有又套了一层其函数。

1.4 二叉搜索树的应用

1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到
的值。
比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:
以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方
式在现实生活中非常常见:
比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英
文单词与其对应的中文<word, chinese>就构成一种键值对;
再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出
现次数就是<word, count>就构成一种键值对。

改造二叉搜索树为KV结构 ,我们只需要将其前面的代码进行修改即可为KV模型。

namespace key_value
{template<class K, class V>struct BSTreeNode{typedef BSTreeNode<K, V> Node;Node* _left;Node* _right;K _key;V _value;BSTreeNode(const K& key, const V& value):_left(nullptr),_right(nullptr),_key(key),_value(value){}};template<class K, class V>class BSTree{typedef BSTreeNode<K, V> Node;public:bool Insert(const K& key, const V& value){if (_root == nullptr){_root = new Node(key, value);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{return false;}}cur = new Node(key, value);if (parent->_key < key){parent->_right = cur;}else{parent->_left = cur;}return true;}Node* Find(const K& key){Node* cur = _root;while (cur){if (cur->_key < key){cur = cur->_right;}else if (cur->_key > key){cur = cur->_left;}else{return cur;}}return nullptr;}bool Erase(const K& key){Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_key < key){parent = cur;cur = cur->_right;}else if (cur->_key > key){parent = cur;cur = cur->_left;}else{if (cur->_left == nullptr){if (cur == _root){_root = cur->_right;}else{if (cur == parent->_right){parent->_right = cur->_right;}else{parent->_left = cur->_right;}}delete cur;return true;}else if (cur->_right == nullptr){if (cur == _root){_root = cur->_left;}else{if (cur == parent->_right){parent->_right = cur->_left;}else{parent->_left = cur->_left;}}delete cur;return true;}else{// 替换法Node* rightMinParent = cur;Node* rightMin = cur->_right;while (rightMin->_left){rightMinParent = rightMin;rightMin = rightMin->_left;}cur->_key = rightMin->_key;if (rightMin == rightMinParent->_left)rightMinParent->_left = rightMin->_right;elserightMinParent->_right = rightMin->_right;delete rightMin;return true;}}}return false;}void InOrder(){_InOrder(_root);cout << endl;}private:void _InOrder(Node* root){if (root == nullptr)return;_InOrder(root->_left);cout << root->_key << " ";_InOrder(root->_right);}private:Node* _root = nullptr;};
}

1.5 二叉搜索树的性能分析

插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二
叉搜索树的深度的函数,即结点越深,则比较次数越多。
但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

 最优情况下,二叉搜索树为完全二叉树(或者接近完全二叉树),其平均比较次数为:log_2n
最差情况下,二叉搜索树退化为单支树(或者类似单支),其平均比较次数为:
如果退化成单支树,二叉搜索树的性能就失去了。那能否进行改进,不论按照什么次序插
入关键码,二叉搜索树的性能都能达到最优?那么我们后续学习的AVL树和红黑树就可以上
场了。


以上就是全部内容,感谢大家观看!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/453595.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

jsp商场会员卡管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 JSP 商场会员卡管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为Mysql5.…

高斯消去法 | LU分解 | PA=LU分解(MatLab)

一、问题描述 利用高斯消去法&#xff0c;LU 分解及PALU 分解求解非线性方程组。 二、实验目的 掌握高斯消去法、LU 分解、PALU 分解的算法原理&#xff1b;编写代码实现利用高斯消去法、LU 分解、PALU 分解来求解线性方程组。 三、实验内容及要求 1. 利用顺序高斯消去法求…

C语言标准库所有字符串操作库函数汇总

以下是C语言标准库中字符串操作相关的API列表&#xff0c;这些函数通常在 <string.h> 头文件中定义&#xff1a; 1. strlen - 计算字符串长度&#xff0c;不包括结尾的空字符\0&#xff1a; size_t strlen(const char *str); 2. strcpy - 复制字符串&#xff1a; c…

【Linux】信号-上

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;【LeetCode】winter vacation training 目录 &#x1f449;&#x1f3fb;信号的概念与产生jobs命令普通信号和实…

154基于matlab的二维元胞自动机模拟森林火灾(生命游戏 )和模拟收费站交通流

基于matlab的二维元胞自动机模拟森林火灾&#xff08;生命游戏 &#xff09;和模拟收费站交通流。全国大学生美国建模竞赛&#xff0c;程序已调通&#xff0c;可直接运行。 154 元细胞自动机 森林起火 收费站交通 (xiaohongshu.com)

Python flask 模板详解

文章目录 1 概述1.1 模板简介1.2 templates 文件1.3 简单应用 2 模板语法2.1 for 循环2.2 if 判断 3 模板的继承3.1 格式要求3.2 实现示例3.3 复用父模板的内容&#xff1a;super 1 概述 1.1 模板简介 定义&#xff1a;定义好的 html 文件&#xff0c;用于快速开发 web 页面J…

【linux】git和gdb调试工具

在linux下提交代码同步到gitee 1.创建一个新的仓库&#xff08;演示步骤&#xff09; 2.init 这两个步骤用于识别提交代码的身份&#xff0c;一个你的名字&#xff0c;一个你的邮箱 开启本地仓库 克隆本地仓库成功 我们将这个仓库拷到了111目录底下. 我们发现少了一个.gitig…

Centos 7.5 安装 NVM 详细步骤

NVM&#xff08;Node Version Manager&#xff09;是一个用于管理Node.js版本的工具&#xff0c;它可以让你轻松地在多个版本之间切换。NVM 通过下载和管理 Node.js 的多个版本&#xff0c;为用户提供了一种灵活的方式来使用不同版本的 Node.js。如果你需要更多关于NVM的信息&a…

【云原生之kubernetes系列】--污点与容忍

污点与容忍 污点&#xff08;taints)&#xff1a;用于node节点排斥Pod调度&#xff0c;与亲和效果相反&#xff0c;即taint的node排斥Pod的创建容忍&#xff08;toleration)&#xff1a;用于Pod容忍Node节点的污点信息&#xff0c;即node节点有污点&#xff0c;也将新的pod创建…

超时引发的牛角尖二(hystrix中的超时)

至今我都清楚记得自己负责的系统请求云上关联系统时所报的异常信息。为了解决这个异常&#xff0c;我坚持让这个关联系统的负责人查看&#xff0c;并且毫不顾忌他的嘲讽和鄙视&#xff0c;甚至无视他烦躁的情绪。不过我还是高估了自己的脸皮&#xff0c;最终在其恶狠狠地抛下“…

Blender_查看版本

Blender_查看版本 烦人的烦恼&#xff0c;没找见哪儿可以查看版本&#xff1f; 算是个隐蔽的角落&#xff01;

[设计模式Java实现附plantuml源码~结构型]处理多维度变化——桥接模式

前言&#xff1a; 为什么之前写过Golang 版的设计模式&#xff0c;还在重新写Java 版&#xff1f; 答&#xff1a;因为对于我而言&#xff0c;当然也希望对正在学习的大伙有帮助。Java作为一门纯面向对象的语言&#xff0c;更适合用于学习设计模式。 为什么类图要附上uml 因为很…