微服务—RabbitMQ

目录

初识MQ

同步和异步通讯

同步通讯的优缺点

异步调用方案

异步通信优缺点

常见MQ技术对比 

RabbitMQ快速入门 

安装RabbitMQ

RabbitMQ整体架构与相关概念 

常见消息模型​编辑

入门案例

SpringAMQP

基本介绍

SpringAMQP案例——模拟HelloWorld消息模型

SpringAMQP案例——模拟WorkQueue消息模型

SpringAMQP案例——模拟发布订阅消息模型

发布订阅消息模型介绍

案例——FanoutExchange

案例——DirectExchange

案例——TopicExchange

消息转换器


初识MQ

同步和异步通讯

        微服务间通讯有同步和异步两种方式:同步通讯就像打电话,需要实时响应,异步通讯就像发邮件,不需要马上回复。两种方式各有优劣,打电话可以立即得到响应,但是你却不能跟多个人同时通话。发送邮件可以同时与多个人收发邮件,但是往往响应会有延迟。


同步通讯的优缺点

优点:
时效性较强,可以立即得到结果。
缺点:
1. 耦合度高:每次加入新的需求,都要修改原来的代码;
2. 性能下降:调用者需要等待服务提供者响应,如果调用链过长则响应时间等于每次调用的时间之和;
3. 资源浪费:调用链中的每个服务在等待响应过程中,不能释放请求占用的资源,高并发场景下会极度浪费系统资源;
4. 级联失败:如果服务提供者出现问题,所有调用方都会跟着出问题如同多米诺骨牌一样,迅速导致整个微服务群故障。


异步调用方案

        我们以购买商品为例,用户支付后需要调用订单服务完成订单状态修改,调用物流服务,从仓库分配响应的库存并准备发货。
        在事件模式中,支付服务是事件发布者,在支付完成后只需要发布一个支付成功的事件,事件中带上订单id。
        订单服务和物流服务是事件订阅者,订阅支付成功的事件,监听到事件后完成自己业务即可。
        为了解除事件发布者与订阅者之间的耦合,两者并不是直接通信,而是有一个中间Broker。发布者发布事件到Broker,不关心谁来订阅事件。订阅者从Broker订阅事件,不关心谁发来的消息。


异步通信优缺点

优点:
1. 吞吐量提升:无需等待订阅者处理完成,响应更快速;
2. 故障隔离:服务没有直接调用,不存在级联失败问题;
3. 调用间没有阻塞,不会造成无效的资源占用;
4. 耦合度极低,每个服务都可以灵活插拔,可替换;
5. 流量削峰:不管发布事件的流量波动多大,都由Broker接收,订阅者可以按照自己的速度去处理事件。
缺点:
1. 架构复杂了,业务没有明显的流程线,不好管理;
2. 需要依赖于Broker的可靠、安全、性能。


常见MQ技术对比 


RabbitMQ快速入门 

安装RabbitMQ

步骤1 在线拉取镜像

​​​​​​​docker pull rabbitmq:3-management

步骤2 执行下面的命令来运行MQ容器,在命令行中设置用户名和密码

docker run \-e RABBITMQ_DEFAULT_USER=root \-e RABBITMQ_DEFAULT_PASS=123456 \--name mq \--hostname mq1 \-p 15672:15672 \-p 5672:5672 \-d \rabbitmq:3-management

步骤3 进入RabbitMQ管理平台

        安装好后,安装好后通过IP+端口访问管理界面。管理界面端口是15672,tcp连接的端口是5672。在浏览器中访问192.168.237.128:1567进入RabbitMQ管理平台,其中192.168.237.128为虚拟机ip地址。


RabbitMQ整体架构与相关概念 

RabbitMQ架构图

RabbitMQ中的几个概念
channel:操作MQ的工具
exchange:路由消息到队列中
queue:缓存消息
virtualhost:虚拟主机,是对queue、exchange等资源的逻辑分组 


常见消息模型


入门案例

发布者发送消息代码:

public class PublisherTest {@Testpublic void testSendMessage() throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.150.101");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("itcast");factory.setPassword("123321");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.发送消息String message = "hello, rabbitmq!";channel.basicPublish("", queueName, null, message.getBytes());System.out.println("发送消息成功:【" + message + "】");// 5.关闭通道和连接channel.close();connection.close();}
}

运行之后可以在RabbitMQ管理平台看到队列里已经有一个消息

点击该消息,通过Get Message可以查看接收到的消息内容

 消费者建立连接代码:

public class ConsumerTest {@Testpublic static void main(String[] args) throws IOException, TimeoutException {// 1.建立连接ConnectionFactory factory = new ConnectionFactory();// 1.1.设置连接参数,分别是:主机名、端口号、vhost、用户名、密码factory.setHost("192.168.237.128");factory.setPort(5672);factory.setVirtualHost("/");factory.setUsername("root");factory.setPassword("123456");// 1.2.建立连接Connection connection = factory.newConnection();// 2.创建通道ChannelChannel channel = connection.createChannel();// 3.创建队列String queueName = "simple.queue";channel.queueDeclare(queueName, false, false, false, null);// 4.订阅消息channel.basicConsume(queueName, true, new DefaultConsumer(channel){@Overridepublic void handleDelivery(String consumerTag, Envelope envelope,AMQP.BasicProperties properties, byte[] body) throws IOException {// 5.处理消息String message = new String(body);System.out.println("接收到消息:【" + message + "】");}});System.out.println("等待接收消息。。。。");}
}

运行之后可以在RabbitMQ管理平台发现已经建立起一个连接,并且能够在idea控制台观察到从消息队列里获取的消息。

​​​​​​​

小结:

发布者和生产者的代码中,都有创建队列这一部分,是否会产生冲突?
由于无法确定发布者和生产者运行的前后顺序,为避免寻找不到所需绑定的队列,因此都需要创建队列,如果该队列已经存在,也不会产生冲突。

基本消息队列的消息发送流程
1.建connection
2.创建channel
3.利用channel声明队列
4.利用channel向队列发送消息

基本消息队列的消息接收流程
1.建connection
2.创建channel
3.利用channel声明队列
4.定义consumer的消费行为handleDelivery05.利用channel将消费者与队列绑定


SpringAMQP

基本介绍

AMQP(Advanced Message Queuing Protocol)是用于在应用程序或之间传递业务消息的开放标准。该协议与语言和平台无关,更符合微服务中独立性的要求。

Spring AMQP是基于AMQP协议定义的一套API规范,提供了模板来发送和接收消息。包含两部分,其中spring-amqp是基础抽象spring-rabbit是底层的默认实现。


SpringAMQP案例——模拟HelloWorld消息模型

模拟消息发送:

步骤1. 在工程中引入AMQP依赖

<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

步骤2. 配置MQ地址:在publisher服务的application.yml中添加配置

spring:rabbitmq:host: 192.168.237.128 # rabbitMQ的ip地址port: 5672 # 端口username: rootpassword: 123456virtual-host: /

步骤3. 在publisher服务中设置测试类,利用convertAndSend方法实现信息发送

@RunWith(SpringRunner.class)
@SpringBootTest
public class SpringAmqpTest {@Autowiredprivate RabbitTemplate rabbitTemplate;@Testpublic void testSendMessage2SimpleQueue() {String queueName = "simple.queue";String message = "hello,spring amqp";rabbitTemplate.convertAndSend(queueName,message);}
}

运行之后可以看到消息队列中存在一条消息,消息内容为我们发送的内容


模拟消息接收:

步骤1. 在工程中引入AMQP依赖

<!--AMQP依赖,包含RabbitMQ-->
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

步骤2. 配置MQ地址:在consumer服务的application.yml中添加配置

spring:rabbitmq:host: 192.168.237.128 # rabbitMQ的ip地址port: 5672 # 端口username: rootpassword: 123456virtual-host: /

步骤2. 在consumer服务中新建一个类,编写消费逻辑

@Component
public class SpringRabbitListener {@RabbitListener(queues = "simple.queue")public void listenSimpleQueue(String msg){System.out.println("消费者接收到simple.queue的消息:【" + msg + "】");}
}

运行之后,通过idea控制台可以看到已经成功接收到消息

注意:消息一旦消费就会从队列删除,RabbitMQ没有消息回溯功能。


SpringAMQP案例——模拟WorkQueue消息模型

根据WorkQueue消息模型,有一个发布者和两个消费者,因此我们模拟消费者发送大量消息的情况。

/*** workQueue* 向队列中不停发送消息,模拟消息堆积。*/
@Test
public void testWorkQueue() throws InterruptedException {// 队列名称String queueName = "simple.queue";// 消息String message = "hello, message_";for (int i = 0; i < 50; i++) {// 发送消息rabbitTemplate.convertAndSend(queueName, message + i);Thread.sleep(20);}
}

再设置两个消费者,通过设置sleep休眠,明显区分两个消费者的性能。

@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue1(String msg) throws InterruptedException {System.out.println("消费者1接收到的消息:【" + msg + "】" + LocalTime.now());Thread.sleep(20);
}@RabbitListener(queues = "simple.queue")
public void listenSimpleQueue2(String msg) throws InterruptedException {System.err.println("消费者2接收到的消息:【" + msg + "】" + LocalTime.now());Thread.sleep(200);
}

先运行发布者,发布50条消息,再运行消费者,控制台信息如下:

        通过观察控制台信息,我们可以发现,消费者1只接收单数的消息,而消费者2只接收双数的消息。当消费者1很快完成了自己的25条消息,消费者2却在缓慢的处理自己的25条消息。

        这是由WorkQueue消息模型中的消息预取机制所导致的。在该机制下,消费者无论当前是否能够处理消息,都会提前从队列中取出消息。因此,所有的消息会被平均分配给两个消费者。结果是,无论哪个消费者的接收速度较快,整体的消息接收速度都取决于接收速度较慢的消费者。

        为了解决这个问题,我们可以通过设置消费者每次获取消息的数量来进行限制。只允许每个消费者一次获取一条消息,并且要求在当前消息处理完毕之后才能获取下一条消息。通过这种方式,我们可以实现能者多劳的效果。

经过设置后,我们再次运行程序,可以发现结果不再像之前一样,消费者1能够根据自己的性能接收更多消息。

​​​​​​​


SpringAMQP案例——模拟发布订阅消息模型

发布订阅消息模型介绍

可以看到,在订阅模型中,多了一个exchange角色,而且过程略有变化:

Publisher:生产者,也就是要发送消息的程序,但是不再发送到队列中,而是发给X(交换机)

  • Exchange:交换机,图中的X。一方面,接收生产者发送的消息。另一方面,知道如何处理消息,例如递交给某个特别队列、递交给所有队列、或是将消息丢弃。到底如何操作,取决于Exchange的类型。Exchange有以下3种类型:

    • Fanout:广播,将消息交给所有绑定到交换机的队列

    • Direct:定向,把消息交给符合指定routing key 的队列

    • Topic:通配符,把消息交给符合routing pattern(路由模式) 的队列

  • Consumer:消费者,与以前一样,订阅队列,没有变化

  • Queue:消息队列也与以前一样,接收消息、缓存消息。


案例——FanoutExchange

步骤1. 在consumer中创建一个类,用于声明队列和交换机,并将队列与交换机进行绑定

@Configuration
public class FanoutConfig {// 声明交换机 itcast.fanout@Beanpublic FanoutExchange fanoutExchange() {return new FanoutExchange(("itcast.fanout"));}// 声明fanout.queue1@Beanpublic Queue fanoutQueue1() {return new Queue("fanout.queue1");}// 绑定队列1到交换机@Beanpublic Binding fanoutBinding1(Queue fanoutQueue1, FanoutExchange fanoutExchange) {return BindingBuilder.bind(fanoutQueue1).to(fanoutExchange);}// 声明fanout.queue2@Beanpublic Queue fanoutQueue2() {return new Queue("fanout.queue2");}// 绑定队列2到交换机@Beanpublic Binding fanoutBinding2(Queue fanoutQueue2, FanoutExchange fanoutExchange) {return BindingBuilder.bind(fanoutQueue2).to(fanoutExchange);}}

重新运行后,在RabbitMQ管理平台中可以看到已经生成该交换机,并且与两个队列绑定。

      

步骤2:在consumer服务的SpringRabbitListener中添加两个方法,作为消费者,对两个队列进行监听

@RabbitListener(queues = "fanout.queue1")
public void listenFanoutQueue1(String msg){System.out.println("消费者接收到fanout.queue1的消息:【" + msg + "】");
}@RabbitListener(queues = "fanout.queue2")
public void listenFanoutQueue2(String msg){System.out.println("消费者接收到fanout.queue2的消息:【" + msg + "】");
}

步骤3. 在publisher服务的SpringAmqpTest类中添加测试方法,将消息发送到交换机

@Test
public void testSendFanoutExchange() {//交换机名称String exchangeName = "itcast.fanout";//消息String message = "hello, every one!";//发送消息rabbitTemplate.convertAndSend(exchangeName,"", message);
}

运行该测试方法,可以在控制台中看到消费者成功接收到消息。 

总结

交换机的作用是什么?
1. 接收publisher发送的消息
2. 将消息按照规则路由到与之绑定的队列
3. 不能缓存消息,路由失败,消息丢失
4. FanoutExchange的会将消息路由到每个绑定的队列

绑定的队列声明队列、交换机、绑定关系的Bean是什么?
Queue、FanoutExchange、Binding


案例——DirectExchange

在Direct模型下:
1. 队列与交换机的绑定,不能是任意绑定了,而是要指定一个 RoutingKey(路由key)
2. 消息的发送方在向 Exchange发送消息时,也必须指定消息的 RoutingKey
3. Exchange不再把消息交给每一个绑定的队列,而是根据消息的 outing key 进行判断,只有队列的Routingkey 与消息的 Routing key 完全一致,才会接收到消息

基于@Bean的方式声明队列和交换机比较麻烦,Spring还提供了基于注解方式来声明。
步骤1. 在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机

    @RabbitListener( bindings = @QueueBinding(value = @Queue(name = "direct.queue1"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "blue"}))public void listenDirectQueue1(String msg) {System.out.println("消费者接收到direct.queue1的消息:【" + msg + "】");}@RabbitListener( bindings = @QueueBinding(value = @Queue(name = "direct.queue2"),exchange = @Exchange(name = "itcast.direct", type = ExchangeTypes.DIRECT),key = {"red", "yellow"}))public void listenDirectQueue2(String msg) {System.err.println("消费者接收到direct.queue2的消息:【" + msg + "】");}

步骤2. 在publisher服务的SpringAmqpTest类中添加测试方法

@Test
public void testSendDirectExchange() {//交换机名称String exchangeName = "itcast.direct";//消息String message = "hello, blue!";//发送消息rabbitTemplate.convertAndSend(exchangeName,"yellow", message);
}

当key为red时,控制台输出如下:

当key为blue时,控制台输出如下:

​​​​​​​

当key为yellow时,控制台输出如下:

总结

描述下Direct交换机与Fanout交换机的差异?
1. Fanout交换机将消息路由给每一个与之绑定的队列
2. Direct交换机根据RoutingKey判断路由给哪个队列
3. 如果多个队列具有相同的RoutingKey,则与Fanout功能类似

基于@RabbitListener注解声明队列和交换机有哪些常见注解?
@Queue、@Exchange


案例——TopicExchange

步骤1. 在consumer的SpringRabbitListener中添加两个消费者,同时基于注解来声明队列和交换机

@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue1"),exchange = @Exchange(name = "itcast.topic" ,type = ExchangeTypes.TOPIC),key = "china.#"
))
public void listenTopicQueue1(String msg) {System.out.println("消费者接收到Topic.queue1的消息:【" + msg + "】");
}@RabbitListener(bindings = @QueueBinding(value = @Queue(name = "topic.queue2"),exchange = @Exchange(name = "itcast.topic" ,type = ExchangeTypes.TOPIC),key = "#.news"
))
public void listenTopicQueue2(String msg) {System.err.println("消费者接收到Topic.queue2的消息:【" + msg + "】");
}

步骤2. 在publisher服务的SpringAmqpTest类中添加测试方法

@Test
public void testSendTopicExchange() {//交换机名称String exchangeName = "itcast.topic";//消息String message = "世界新闻";//发送消息rabbitTemplate.convertAndSend(exchangeName,"world.news", message);
}

当key为china.news时,控制台输出如下:

 当key为china.weather时,控制台输出如下:

 当key为workd.news时,控制台输出如下:

 


消息转换器

Spring会把发送的消息序列化为字节发送给MQ,接收消息的时候,还会把字节反序列化为Java对象。只不过,默认情况下Spring采用的序列化方式是JDK序列化,而JDK序列化存在一些问题,如数据体积过大、有安全漏洞、可读性差等。

我们希望消息体的体积更小、可读性更高,因此可以使用JSON方式来做序列化和反序列化。

步骤1. 在publisher和consumer两个服务中都引入依赖:

<dependency><groupId>com.fasterxml.jackson.dataformat</groupId><artifactId>jackson-dataformat-xml</artifactId><version>2.9.10</version>
</dependency>

步骤2. 配置消息转换器,在启动类中添加一个Bean即可:

@Bean
public MessageConverter jsonMessageConverter(){return new Jackson2JsonMessageConverter();
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/454074.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

c语言实现greedy snake(贪吃蛇)

##第一个小项目 大一学生寒假项目 最终实现效果如图 一.以C语言实现个人小项目 在我们快速学完了一个高级编程语言&#xff0c;就应该写一个小项目来加以巩固自己的学习成果。 所以今天&#xff0c;我们来尝试写一写greedy snake&#xff0c;对于大学生来说也是可以加强能…

在线视频格式转换,就是这么简单!(免费)

随着数字化时代的发展&#xff0c;我们在日常生活中越来越频繁地与各种视频文件打交道。然而&#xff0c;不同设备和平台对于视频格式的支持可能存在差异&#xff0c;这就导致了我们有时需要进行视频格式的转换&#xff0c;以确保视频在各种环境中流畅播放。而幸运的是&#xf…

【目标跟踪】3D点云跟踪

文章目录 一、前言二、代码目录三、代码解读3.1、文件描述3.2、代码框架 四、关联矩阵计算4.1、ComputeLocationDistance4.2、ComputeDirectionDistance4.3、ComputeBboxSizeDistance4.4、ComputePointNumDistance4.5、ComputePointNumDistance4.6、result_distance 五、结果 一…

对称二叉树

给你一个二叉树的根节点 root &#xff0c; 检查它是否轴对称。 示例 1&#xff1a; 输入&#xff1a;root [1,2,2,3,4,4,3] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,null,3,null,3] 输出&#xff1a;false提示&#xff1a; 树中节点数目在范围…

zabbix server/agent源码编译成rpm包(通用版-小白教程)

前言 工作环境需要用到很多信创的操作系统&#xff0c;zabbix agent2的官方没有现成的包可用&#xff0c;网上巴拉了一下找到zabbix agent2通用版编译成rpm包的方法 思路&#xff1a;假如当你有一批ky10_x86的机器需要配套的zabbix agent的rpm包&#xff0c;那就找一台ky10_x…

在VM虚拟机上搭建MariaDB数据库服务器

例题&#xff1a;搭建MariaDB数据库服务器&#xff0c;并实现主主复制。 1.在二台服务器中分别MariaDB安装。 2.在二台服务器中分别配置my.cnf文件&#xff0c;开启log_bin。 3.在二台服务器中分别创建专用于数据库同步的用户replication_user&#xff0c;并授权SLAVE。&#x…

车企MQ人工智能应用创新,比我们想象的要猛!

上期&#xff0c;迅易科技AI智能应用板块制造行业客户总监付雨鑫Mary和我们讲述了国内某配胶龙头企业进行AI配胶技术的智能创新《“制造”变“智造”&#xff0c;才是企业提效的成功密码&#xff01;》&#xff0c;制造行业的智能应用创新引起了许多用户的兴趣。 那么&#xff…

视觉SLAM十四讲学习笔记(一)初识SLAM

目录 前言 一、传感器 1 传感器分类 2 相机 二、经典视觉 SLAM 框架 1 视觉里程计 2 后端优化 3 回环检测 4 建图 5 SLAM系统 三、SLAM 问题的数学表述 四、Ubuntu20.04配置SLAM十四讲 前言 SLAM: Simultaneous Localization and Mapping 同时定位与地图构建&#…

【动态规划】【状态压缩】【2次选择】【广度搜索】1494. 并行课程 II

作者推荐 视频算法专题 本文涉及知识点 动态规划汇总 状态压缩 广度优先搜索 LeetCode1494. 并行课程 II 给你一个整数 n 表示某所大学里课程的数目&#xff0c;编号为 1 到 n &#xff0c;数组 relations 中&#xff0c; relations[i] [xi, yi] 表示一个先修课的关系&am…

电机控制系列模块解析(第四篇)—— 参数辨识

某人刚开始就问我离线参数辨识&#xff08;也称为参数自学习&#xff09;的问题&#xff0c;那就先入手讲一讲这个。 参数辨识分为&#xff1a;离线辨识和在线辨识。 离线辨识&#xff1a;包括了定子电阻辨识、定子电感辨识、初始位置的辨识、EMF辨识、转动惯量辨识、逆变器非…

【jenkins】主从机制及添加Slave节点操作

一、master-slave 日常构建Jenkins任务中&#xff0c;会经常出现下面的情况&#xff1a; 自动化测试需要消耗大量的 CPU 和内存资源&#xff0c;如果服务器上还有其他的服务&#xff0c;可能会造成卡顿或者宕机这样的情况&#xff1b; Jenkins 平台上除了这个项目&#xff0c…

react和antd学习笔记

概论 react是前端框架&#xff0c;antd是组件库。前端框架和组件库的区别与联系 nodejs 脚本语言需要一个解析器才能运行&#xff0c;JavaScript是脚本语言&#xff0c;在不同的位置有不一样的解析器&#xff0c;如写入html的js语言&#xff0c;浏览器是它的解析器角色。而对…