Redis核心技术与实战【学习笔记】 - 17.Redis 缓存异常:缓存雪崩、击穿、穿透

概述

Redis 的缓存异常问题,除了数据不一致问题外,还会面临其他三个问题,分别是缓存雪崩、缓存击穿、缓存穿透。这三个问题,一旦发生,会导致大量的请求积压到数据库。若并发量很大,就会导致数据库宕机或故障,这是很严重的生产事故。


1.缓存雪崩

缓存雪崩是指大量的应用请求无法在 Redis 缓存中进行处理,应用将大量的请求发送到数据库层,导致数据库层压力激增。

造成缓存雪崩的原因一般有两个,应对的方案也不同。

1.1第一个原因是:缓存中有大量的数据同时过期,导致大量请求无法得到处理

具体来说,当数据保存在缓存中,并且设置了过期时间时,如果在某一时刻,大量数据同时过期,此时应该在访问这些数据就发生缺失。紧接着,应用就会把请求发送给数据库,从数据库中读取数据。如果应用的并发请求量很大,那么数据库的压力也就很大,这会加剧影响到数据库的其他正常业务请求处理。

在这里插入图片描述
针对大量数据同时失效带来的缓存雪崩,有两种解决方案。

A.可以避免给大量的数据设置相同的过期时间

如果业务层的确要求有些数据同时过期,你可以在用 EXPIRE 命令给每个数据过期时,给过期时间增加一个较小的随机数(例如,随机增加1~3分钟),这样一来,不同数据的过期时间有所差别,但差别有不会太大,既避免了大量数据同时过期,又保证了这些数据基本在相近的时间失效,仍能满足业务需求。

B.还可以通`服务降级来应对雪崩。

所谓服务降级,是指发送缓存雪崩时,针对不同的数据采取不同的处理方式。

当业务访问的是非核心数据(如电商商品属性)时,暂时停止从缓存中查询这些数据,而是直接返回预定义信息、空值或错误信息。

当业务应用访问的是核心数据(例如商品库存)时,仍然运行查询缓存,如果缓存缺失,也可以继续通过数据库读取。

这样一来,只有部分过期数据的请求会发送到数据库,数据库的压力也就没有那么大了。

在这里插入图片描述

1.2 第二个原因是 Redis 实例发送故障宕机了,无法处理请求,这会导致大量请求一下子积压到数据库层,从而发生雪崩

一般来说,一个 Redis 实例可以支持万级别的请求处理吞吐量,而单个数据库可能只支持数钱级别的吞吐量。由于缓存雪崩,Redis 缓存失效,所以数据库可能因压力过大而崩溃。

有两个建议可以应对 Redis 宕机而引发的缓存雪崩。

第一个建议,是在业务系统中实现服务熔断或请求限流机制

服务熔断,是指在发送缓存雪崩时,为了防止引发连锁的数据库雪崩,甚至是整个系统的崩溃,我们暂停业务应用对缓存系统的接口访问。即业务应用调用缓存接口时,客户端并不把请求发给 Redis 实例,而是直接返回等到 Redis 实例重新恢复后,再允许应用请求发送到缓存系统。这样就避免了大量请求应缓存缺失,而积压到数据库。

在业务系统运行时,我们可以监测 Redis 缓存所在机器和数据库所在机器的负载指标,如每秒请求书、CPU 利用率等。如果发现 Redis 缓存确实宕机了,而数据库所在机器的负载压力突然增加(例如,每秒请求数激增),此时就发生缓存雪崩了。我们可以启动熔断机制,暂停业务应用对缓存服务的访问,从而降低数据库的访问压力。
在这里插入图片描述
熔断服务虽然可以保证数据库的正常运行,但是暂停了整个缓存系统的访问,对业务应用的影响范围大。为了尽可能减少这种影响,我们也可以进行请求限流
请求限流是指,我们在业务系统发请求入口前端控制每秒进入系统的请求数,避免过多的请求被发送到数据库。

假设业务系统正常运行是,请求入口允许每秒进入系统的请求是 1 万个,其中,9000 个请求都能在缓存中处理,只有 1000 个请求会被应用发送到数据库。

一旦发生了缓存雪崩,数据库每秒的请求突然增加到 1 万个,此时,就可以启动请求限流机制,在请求入口前端只允许每秒进入 1000 个请求,再多的请求就会在入口前端直接拒绝服务。所以,使用了请求限流,就可以避免大量并发请求压力传递到数据库层。

在这里插入图片描述
使用熔断或是请求限流,来应对 Redis 实例宕机导致的缓存雪崩问题,属于“事后诸葛亮”。

第二个建议是事前预防

通过主从节点的方式构建 Redis 缓存高可靠集群。如果 Redis 缓存的主节点故障宕机了,从节点还可以切换成主节点,继续提供缓存服务,避免了由于缓存实例宕机而导致的缓存雪崩问题。

2.缓存击穿

缓存击穿是指,某个访问非常频繁的热点数据的请求,无法在缓存中进行处理,紧接着,该访问该数据集的大量请求,一下子都发送到了后端数据库,导致了数据库压力激增,会影响数据库处理其他请求。缓存击穿的情况,经常发送在热点数据过期失效时,如下所示:

缓存击穿
为避免缓存击穿给数据库带来的激增压力,解决办法是:对于访问特别频繁的热点数据,我们就不设置过期时间了。这样一样,对热点数据的服务请求,都可以在缓存中进行处理。

3.缓存穿透

缓存穿透是指要访问的数据既不在 Redis 缓存中,也不在数据库中,导致请求在访问缓存时,发生缓存缺失,再去访问数据库,但是发现数据库中也没有要访问的数据。此时,应用也无法从数据库中读取数据再写入缓存,这样一来缓存就成了"摆设"。如果应用持续有大量请求访问数据库,就会同时给缓存和数据库带来巨大压力:
在这里插入图片描述
缓存穿透一般在什么时候发生?

  • 业务层误操作:缓存中和数据库中的数据被误删了,所以缓存中和数据库中都没有数据。
  • 恶意攻击:专门访问数据库中没有的数据。

一共有三种方案来应对缓存穿透的问题

3.1 第一种方案是缓存空值或缺省值

一旦发生缓存穿透,我们就可以针对查询的数据,在 Redis 中缓存一个空值或是业务层商定的缺省值。紧接着,应用发送后的请求在进行查询时,就可以直接从 Redis 中读取空值或缺省值返回给业务应用了,避免了把大量请求发送给数据库。

3.2 第二种方案是,使用布隆过滤器快速判断数据是否存在,避免从数据库中查询数据是否存在,减去数据库压力

先看下布隆过滤器是如何工作的。布隆过滤器由一个 初值都为 0 的 bit 数组N 个哈希函数 组成,它可以用来快速判断某个数据是否存在。当我们想标记某个数据存在时(例如,数据已被写入数据库),布隆过滤器会通过三个操作完成标记:

  • 首先,使用 N 个哈希函数,分别计算这个数据的哈希值,得到 N 个哈希值。
  • 然后,把这个 N 个哈希值对 bit 数组的长度取模,得到每个哈希值在数组中的位置。
  • 最后,我们把对应的 bit 位设置为 1,这就完成了在布隆过滤器中标记数据的操作。

如果数据不存在(例如,在数据库中没有写入数据),我们也就没有用布隆过滤器标记过数据,那么, bit 数组对应的 bit 位的值仍为 0。

当需要查询某个数据时,我们就执行刚刚的计算过程,先得到这个数据在 bit 数组中对应的 N 个位置。紧接着,查看 bit 数组中这个 N 个位置上的 bit 值。只要这 N 个 bit 值有一个不为 1,这就表明布隆过滤器没有对该数据做过标记,所以,查询的数据一定没有在数据库中保存。
在这里插入图片描述

  1. 图中布隆过滤器是一个包含 10 个 bit 位的数组,使用 3 个哈希函数。
  2. 当在布隆过滤器中标记 X 时,X 会被计算 3 次哈希值,并对 10 取模,取模的结果分别是 1、3、7。
  3. 所以,bit 数组的第 1、3、7 位被设置为 1。
  4. 当应用要查询 X 时,只有查看数组的第 1、3、7 位是否为 1。只要有一个为 0,那么 X 就肯定不在数据库中。

正式基于布隆过滤器的快速检测特性,我们可以在把数据写入数据库时,使用布隆过滤器做个标记。当缓存缺失后,应用查询数据库时,可以通过查询布隆过滤器快速判断数据是否存在。如果不存在,就不用再去数据库中查询了。这样一来,及时发送了缓存穿透,大量请求只会查询 Redis 和布隆过滤器,而不会积压请求到数据库。布隆过滤器可以使用 Redis 实现,本身就能承受较大的并发压力。

3.3 最后一种方案是在请求入口的前端进行检测

缓存穿透的一个原因是有大量的恶意请求访问不存在的数据,所以,一个有效的应对方案是在请求入口前端,对业务系统接收到的请求进行合法性检测,把恶意请求(例如请求参数不合发、请求字段不存在)直接过滤掉,不让他们访问后端缓存和数据库。这样一来,也就不会出现缓存穿透问题了。

4.小结

我把三大问题的原因和应对方案总结到一张表格上。

问题原因应对方案
缓存雪崩大量数据同时过期
缓存实例宕机
给缓存数据的过期时间加上小的随机数,避免同时过期
服务降级
服务熔断
请求限流
Redis主从集群
缓存击穿访问非常频繁的热点数据过期不给热点数据设置过期时间
缓存穿透缓存和数据库中都没有要访问的数据缓存空值或缺省值
请求使用布隆过滤器快速判断
请求入口前端对请求合法性进行检查

最后,要强调以下,服务熔断服务降级请求限流这些方法都属于“有损”方案,在保证数据库和整体系统稳定的同事,会对业务应用带来负面影响。

所以,建议尽量使用预防方案:

  • 针对缓存雪崩,合理的设置数据过期时间,以及搭建高可靠缓存集群。
  • 针对缓存击穿,在缓存访问非常频繁的热点数据时,不要设置过期时间。
  • 针对缓存穿透,提前在入口前端实现恶意请求检测、使用不容过滤器快速判断,或者规范数据库的数据删除操作,避免误删。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/454257.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenCV学习记录——平滑处理

文章目录 前言一、图像噪声二、图像平滑处理三、完整应用代码 前言 当我们用树莓派进行opencv图像处理时,摄像头所获取的图像质量通常会有所下降,此时,需要多种手段来优化图像的质量,提高图像识别的准度。今天所记录的是当图片经过…

使用代理IP有风险吗?如何防范潜在的风险?

代理IP用途无处不在。它们允许您隐藏真实IP地址,从而实现匿名性和隐私保护。这对于保护个人信息、绕过地理受限的内容或访问特定网站都至关重要。 然而,正如任何技术工具一样,代理IP地址也伴随着潜在的风险和威胁。不法分子可能会滥用代理IP…

【八大排序】选择排序 | 堆排序 + 图文详解!!

📷 江池俊: 个人主页 🔥个人专栏: ✅数据结构冒险记 ✅C语言进阶之路 🌅 有航道的人,再渺小也不会迷途。 文章目录 一、选择排序1.1 基本思想1.2 算法步骤 动图演示1.3 代码实现1.4 选择排序特性总结 二…

ThinkPad T430 黑苹果Hackintosh 使用OpenCore成功安装macOS 14.3 Sonoma

先放几张图,如果有感兴趣的,点个赞再走呗。 有人想看,我也有动力去慢慢补文字,讲述一下详细过程。 过去一直以为,老电脑只能黑苹果低版本的macOS 今天成功安装了最新的Sonoma,运行流畅,连超高…

C++进阶--搜索二叉树

概念 搜索二叉树是一种特殊的二叉树,其具有以下特点: 1.对于每个结点,它的左子树中的所有节点的值都小于该节点的值,而右子树中的所有节点的值都大于该节点的值。 2.左子树和右子树都是搜索二叉树。 这个 特性使得搜索二叉树可…

《合成孔径雷达成像算法与实现》Figure6.5

clc clear close all参数设置 距离向参数设置 R_eta_c 20e3; % 景中心斜距 Tr 2.5e-6; % 发射脉冲时宽 Kr 20e12; % 距离向调频率 alpha_os_r 1.2; % 距离过采样率 Nrg 320; % 距离线采样数 距离向…

SpringbootV2.6整合Knife4j 3.0.3 问题记录

参考 https://juejin.cn/post/7249173717749940284 近期由于升级到springboot2.6X,所以服务端很多组件都需要重新导入以及解决依赖问题。 下面就是一个很经典的问题了, springboot2.6与knife4j的整合。 版本对应 springboot2.6与knife4j 3.0.3 坑 …

【UE 材质】扇形材质

目录 效果 步骤 (1)控制扇形的弧宽度 (2)控制扇形的角度 (3)完整节点 效果 步骤 (1)控制扇形的弧宽度 创建一个材质,混合模式设置为“Additive”,着色…

Python中的HTTP代理与网络安全

在当今数字化的世界里,网络安全已经成为我们无法忽视的重要议题。无数的信息在网络上传递,而我们的隐私和敏感数据也在这个过程中可能面临被窃取或滥用的风险。在Python编程中,HTTP代理作为一种工具,能够在网络安全方面发挥重要的…

JVM 性能调优 - Java 中的四种引用(4)

为什么会有四种引用 我们先回顾下在 Java 虚拟机内存体系(1) 中提到了的垃圾回收算法 1、引用计数法 原理:给对象添加一个引用计数器,每当有一个地方引用它,计数器的值就加一。每当有一个引用失效,计数器的值就减一。当计数器值为零时,这个对象被认为没有其他对象引用,…

瑞_数据结构与算法_B树

文章目录 1 什么是B树1.1 B树的背景1.2 B 的含义1.3 B-树的度和阶1.4 B-树的特性1.5 B-树演变过程示例 2 B-树的Java实现2.1 B树节点类Node 🙊前言:本文章为瑞_系列专栏之《数据结构与算法》的B树篇。由于博主是从B站黑马程序员的《数据结构与算法》学习…

【高质量精品】2024美赛A题22页word版成品论文+数据+多版本前三问代码及代码讲解+前四问思路模型等(后续会更新)

一定要点击文末的卡片,进入后,即可获取完整资料后续参考论文!! 整体分析:这个题目是一个典型的生态系统建模问题,涉及到动物种群的性比例变化、资源可用性、环境因素、生态系统相互作用等多个方面。这个题目的难点在于如何建立一个合理的数学…