《动手学深度学习(PyTorch版)》笔记7.4

注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在Jupyter Notebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python 3.9.18下测试通过,同时对于书上部分章节也做了整合。

Chapter7 Modern Convolutional Neural Networks

7.4 Networks with Parallel Connections: GoogLeNet

在这里插入图片描述

在GoogLeNet中,基本的卷积块被称为Inception块(Inception block),如下图所示。Inception块由四条并行路径组成,前三条路径使用窗口大小为 1 × 1 1\times 1 1×1 3 × 3 3\times 3 3×3 5 × 5 5\times 5 5×5的卷积层,从不同空间大小中提取信息,中间的两条路径先在输入上执行 1 × 1 1\times 1 1×1卷积,以减少通道数,降低模型的复杂性,第四条路径使用 3 × 3 3\times 3 3×3最大汇聚层,然后使用 1 × 1 1\times 1 1×1卷积层来改变通道数,这四条路径都使用合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维度上连结并构成Inception块的输出。在Inception块中,通常调整的超参数是每层输出通道数。
在这里插入图片描述

import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
import matplotlib.pyplot as pltclass Inception(nn.Module):# c1--c4是每条路径的输出通道数def __init__(self, in_channels, c1, c2, c3, c4, **kwargs):super(Inception, self).__init__(**kwargs)# 线路1,单1x1卷积层self.p1_1 = nn.Conv2d(in_channels, c1, kernel_size=1)# 线路2,1x1卷积层后接3x3卷积层self.p2_1 = nn.Conv2d(in_channels, c2[0], kernel_size=1)self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)# 线路3,1x1卷积层后接5x5卷积层self.p3_1 = nn.Conv2d(in_channels, c3[0], kernel_size=1)self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)# 线路4,3x3最大汇聚层后接1x1卷积层self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)self.p4_2 = nn.Conv2d(in_channels, c4, kernel_size=1)def forward(self, x):p1 = F.relu(self.p1_1(x))p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))p4 = F.relu(self.p4_2(self.p4_1(x)))# 在通道维度上连结输出return torch.cat((p1, p2, p3, p4), dim=1)#实现各个模块    
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),nn.ReLU(),nn.Conv2d(64, 192, kernel_size=3, padding=1),nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),Inception(256, 128, (128, 192), (32, 96), 64),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),Inception(512, 160, (112, 224), (24, 64), 64),Inception(512, 128, (128, 256), (24, 64), 64),Inception(512, 112, (144, 288), (32, 64), 64),Inception(528, 256, (160, 320), (32, 128), 128),nn.MaxPool2d(kernel_size=3, stride=2, padding=1))b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),Inception(832, 384, (192, 384), (48, 128), 128),nn.AdaptiveAvgPool2d((1,1)),nn.Flatten())net = nn.Sequential(b1, b2, b3, b4, b5, nn.Linear(1024, 10))
X = torch.rand(size=(1, 1, 96, 96))#为了使Fashion-MNIST上的训练更简洁,将输入的高和宽从224降到96
for layer in net:X = layer(X)print(layer.__class__.__name__,'output shape:\t', X.shape)#训练
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
plt.show()

训练结果:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/455721.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

专业排版设计软件:QuarkXPress 2024 for mac中文激活版

QuarkXPress 2024 for Mac是一款功能强大、易于使用、高质量输出的专业排版软件。无论您是出版业的专家还是初学者,都可以通过QuarkXPress 2024轻松创建出令人惊叹的出版物。 软件下载:QuarkXPress 2024 for mac中文激活版下载 QuarkXPress 2023 for Mac…

第4节、电机多段转动【51单片机+L298N步进电机系列教程】

↑↑↑点击上方【目录】,查看本系列全部文章 摘要:本节介绍用控制步进电机三个主要参数角度、速度、方向,实现简单的步进电机多段控制 一、目标功能 输入多个目标角度,以及每个角度对应的速度,实现步进电机的多段多速…

分享71个节日PPT,总有一款适合您

分享71个节日PPT,总有一款适合您 71个节日PPT下载链接:https://pan.baidu.com/s/1v4_fHplsf_hOJQbNPVUudg?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,收集整理更不易…

【数据结构与算法】之排序系列-20240205

这里写目录标题 一、1346. 检查整数及其两倍数是否存在二、1365. 有多少小于当前数字的数字三、1460. 通过翻转子数组使两个数组相等四、1491. 去掉最低工资和最高工资后的工资平均值五、1502. 判断能否形成等差数列 一、1346. 检查整数及其两倍数是否存在 简单 给你一个整数数…

Kafka 使用手册

kafka3.0 文章目录 kafka3.01. 什么是kafka?2. kafka基础架构3. kafka集群搭建4. kafka命令行操作主题命令行【topic】生产者命令行【producer】消费者命令行【consumer】 5. kafka生产者生产者消息发送流程Producer 发送原理普通的异步发送带回调函数的异步发送同步…

C++学习Day04之this指针

目录 一、程序及输出1.1 基础使用1.2 *this和链式编程1.2.1 返回引用进行链式编程1.2.2 返回值进行链式编程1.3 注意事项 二、分析与总结 一、程序及输出 在 C 中使用类的成员函数时,可以使用 this 指针来引用当前对象的地址。this 指针是一个隐式参数,它…

macbookpro和macbookair的区别?cleanmymac 怎么清理mac空间

苹果mac air和pro区别有:1、air采用了轻薄的设计,重量相对较轻,便于携带,而pro更加注重性能,所以比较重;2、air通常搭载较低功耗的处理器内存和存储容量相对较小,而pro配备了更强大的处理器、更…

[LibreOJ]#6279. 数列分块入门 3

原题地址: https://loj.ac/p/6279https://loj.ac/p/6279 题目描述 给出一个长为 n 的数列,以及 n 个操作,操作涉及区间加法,询问区间内小于某个值 x 的前驱(比其小的最大元素)。 输入格式 第一行输入…

【Java程序设计】【C00246】基于Springboot的留守儿童爱心网站(有论文)

基于Springboot的留守儿童爱心网站(有论文) 项目简介项目获取开发环境项目技术运行截图 项目简介 这是一个基于Springboot的留守儿童爱心网站 本系统分为系统功能模块、管理员功能模块以及用户功能模块。 系统功能模块:系统首页的主要功能展…

Python初学者学习记录——python基础综合案例:数据可视化——动态柱状图

一、案例效果 通过pyecharts可以实现数据的动态显示,直观的感受1960~2019年世界各国GDP的变化趋势 二、通过Bar构建基础柱状图 反转x轴和y轴 标签数值在右侧 from pyecharts.charts import Bar from pyecharts.options import LabelOpts# 构建柱状图对象 bar Bar()…

用通俗易懂的方式讲解:在企业算法项目落地中,大模型能力增强最常用的两种方式

如何对 LLM 大模型增强? 对 LLM 大模型能力增强在企业有两种实践路线:RAG 和 Fine-tuning。接下来我们详细剖析下这两种增强实现方式。 第一:检索增强生成 RAG(Retrieval Augmented Generation)实现方式 2020 年&am…

MongoDB从入门到实战之Docker快速安装MongoDB

前言 在上一篇文章中带领带同学们快速入门MongoDB这个文档型的NoSQL数据库,让大家快速的了解了MongoDB的基本概念。这一章开始我们就开始实战篇教程,为了快速把MongoDB使用起来我将会把MongoDB在Docker容器中安装起来作为开发环境使用。然后我这边MongoD…