深入理解ES的倒排索引

目录

数据写入过程

词项字典 term dictionary

倒排表 posting list

FOR算法

RBM算法

ArrayContainer

BitMapContainer

词项索引 term index


在Elasticsearch中,倒排索引的设计无疑是惊为天人的,下面看下倒排索引的结构。

倒排索引分为词项索引【term index】、词项字典【term dictionary】、倒排表【posting list】

数据写入过程

先看一个原始数据录入的过程,原始数据录入的过程包含切词规范化去重字典化等这么几个步骤,

I am going to bejing这句话,

切词就是将这段英文按照空格进行字段切分,这个就是所谓的分词器的功能,中文也有自己的分词器,当然还可以自定义分词器

分完词以后就是规范化,规范化的过程就是去掉一些语气词,过去分词、现在分词转换成同义词,比如将going转换成go

去重很简单,就是去掉一些重复的词项

字典化就是将这个数据保存起来,用一个id做出对应的映射

词项字典 term dictionary

就是将一段话进行分词以后得到的结果,比如上面的话就会得到go 、bejing等基础信息,可以看到词项字典的数量是原始数据的很多倍

词项字典的数据结构是FST

在介绍FST之前,先介绍下prefix Tree,前缀树的优点是能充分的利用数据空间,比如abc,和abcd这两个词,底层可以共用abc,这样就能大大的节省数据存储占用的空间

但是前缀树有一个缺点就是比如fbcd,这个词的bcd和abcd的后四位是相同的,但是因为前缀树的特点,后四位不能充分利用

而FST是在前缀树的基础上做了改进,能够充分的利用相同的字符来存储,大大提升存储的效率。

倒排表 posting list

倒排表的数据结构是一个有序的数组,数组中记录的是当前词项对应原始数据的id,比如bejing这个词项有很多原始数据对应,id有1,3,5,7

倒排表有两种常见的压缩算法

FOR算法

FOR算法的全称是frame of reference,这个算法的流程大致如下

  • 原始数据比如是[1,3,6,7]这样,可能很长,在java中一个int是占用4个字节,可能通过切分词以后,倒排表的数据占用空间比原始数据还要大
  • 这个时候,因为数组是有序的,可以将数组的每一项都减去前一项来代替当前的值,比如[1,2,3,1]
  • 可以看到,通过这个简单的变形,倒排表的数组中的数据都减小了
  • 然后就可以通过更小的bit来表示一个int的数,比如我可以用3个bit来表示上面的每一个数,这样的数据占用空间就会小很多,极限的情况下数组是连续的,可以使用一个bit来表示一个int数,可以减少到原来的1/32
  • 当然实际情况下,数组不一定是连续的,这个时候可能就会使用分组了,比如3,5,7我使用4个bit来表示,6787,35465,,44656使用14bit来表示,这样想比使用32bit可以节省不少空间

从网上找到一张图,可以很好的说明这个算法

通过上面的案例可以发现,FOR算法的适用场景是,倒排表的数据排列比较稠密,即相邻元素之间的差值比较小,差值比较小,就可以使用更少的bit来表示一个int的数字了。 

RBM算法

记住是RBM,不是RMB,不是RMB,不是RMB

RBM算法的全称是roaringBitMap

可以考虑倒排表中的元素大小是N,N的范围是【0,2^32-1】,因为int是32bit

那么将N/65536这个结果M是多少呢?他的余数K是多少呢

65536是2的16次幂,那么这个M的范围就是[0,65535],毫无疑问N的范围也是[0,65535]

可以看到M就是当前元素N的高16位,K就是当前元素N的低16位

那么,可以设置这样一个数据类型

short在java中是占用2个字节,也就是2*8=16bit,16位bit最大能表示就是65535

ArrayContainer

Map<short,List<Short>>

解释下这个数据结构

key存储的是当前N的的高16位,即M,然后将这个倒排表中所有高位都是M的其他元素的低16位K汇总,聚集成一个数组,因为有合并和压缩,很显然,这种数据结构能节省不少空间,实际占用的空间随着元素的个数成正比

BitMapContainer

Map<short,bitMap>

解释下这个数据结构,key一样的含义,就不说了,因为低16位的值的范围是[0,65535]不重复的,可以通过一个bit数组来表示,这个bit数组的长度是65535,当一个元素经过计算命中了,就将对应下标的bit数组的值改成1

可以看到通过这种方式,占用的空间是固定的,65536/8/1024等于8k

从网上扒来一张图,能很好的说明这两个容器的差异点

以上两个容器,当元素的个数在4096个的时候,达到了平衡,当大于4096个,使用bitMap这个数据结构更加合理,在元素的个数小于4096个时候,使用array这个数据结构更加合理。

这个算法使用的场景是,数组中的元素比较大,同时两个元素之间的间隔很大

词项索引 term index

词项索引的设计是为了更快的找到对应的词项字典

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/460712.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Python】基于动态残差学习的堆叠式LSTM模型和传统BP在股票预测中的应用

1. 前言 本论文探讨了长短时记忆网络&#xff08;LSTM&#xff09;和反向传播神经网络&#xff08;BP&#xff09;在股票价格预测中的应用。首先&#xff0c;我们介绍了LSTM和BP在时间序列预测中的基本原理和应用背景。通过对比分析两者的优缺点&#xff0c;我们选择了LSTM作为…

vue.js基于springboot的实验室设备管理系统10345

(1)设备信息模块&#xff1a;记录设备的基本信息&#xff0c;如设备采购来源信息、设备需求量、当前数量、日期等。 (2) 用户模块&#xff1a;教师职工。实现对用户个人信息、消息管理和实验室设备的查询使用申请等。 (3) 管理员模块&#xff1a;实现对所有设备信息的增删改查&…

svg基础(五)滤镜-高斯模糊,混合模式,偏移,颜色变换

1 作用 滤镜用于对SVG图形增加特殊效果 2 效果 feBlend - 与图像相结合的滤镜feColorMatrix - 用于彩色滤光片转换feComponentTransferfeCompositefeConvolveMatrixfeDiffuseLightingfeDisplacementMapfeFloodfeGaussianBlur 高斯模糊feImagefeMergefeMorphologyfeOffset - …

静态时序分析:静态时序分析的原理及其两种模式PBA、GBA

相关阅读 静态时序分析https://blog.csdn.net/weixin_45791458/category_12567571.html?spm1001.2014.3001.5482 静态时序分析有两种模式&#xff1a;PBA(Path Based Analysis)和GBA(Graph Based Analysis)&#xff0c;PBA是基于路径的分析模式而GBA则是基于图的分析模式。在…

Android开发 button 按钮点击两次 响应onclick方法

问题 Android开发 button 按钮点击两次 响应onclick方法 详细问题 笔者xml代码 <!-- 一个按钮 --> <Button android:id"id/button1" android:layout_width"wrap_conten…

基于YOLOv8的暗光低光环境下(ExDark数据集)检测,加入多种优化方式---自研CPMS注意力,效果优于CBAM ,助力自动驾驶(二)

&#x1f4a1;&#x1f4a1;&#x1f4a1;本文主要内容:详细介绍了暗光低光数据集检测整个过程&#xff0c;从数据集到训练模型到结果可视化分析&#xff0c;以及如何优化提升检测性能。 &#x1f4a1;&#x1f4a1;&#x1f4a1;加入 自研CPMS注意力 mAP0.5由原始的0.682提升…

使用CubeMX快速开始STM32微控制器开发

CubeMX是一款由STMicroelectronics提供的集成开发环境&#xff0c;可以帮助开发者快速启动STM32微控制器的开发。屏蔽了底层配置的繁琐&#xff0c;简化了开发流程&#xff0c;减少了开发时间。本文将向您介绍使用CubeMX进行STM32开发的基本步骤&#xff0c;并附上部分示例代码…

2024阿里云GPU服务器租用费用价格表说明

阿里云GPU服务器租用价格表包括包年包月价格、一个小时收费以及学生GPU服务器租用费用&#xff0c;阿里云GPU计算卡包括NVIDIA V100计算卡、T4计算卡、A10计算卡和A100计算卡&#xff0c;GPU云服务器gn6i可享受3折优惠&#xff0c;阿里云百科aliyunbaike.com分享阿里云GPU服务器…

数字图像处理实验记录七(彩色图像处理实验)

一、基础知识 经过前面的实验可以得知&#xff0c;彩色图像中的RGB图像就是一个三维矩阵&#xff0c;有3个维度&#xff0c;它们分别存储着R元素&#xff0c;G元素&#xff0c;B元素的灰度信息&#xff0c;最后将它们合起来&#xff0c;便是彩色图像。 这一次实验涉及CMYK和HS…

信息安全省赛杂项题解题思路

task1 直接查看文件属性即可得到 flag task2 载入 HxD 中&#xff0c;搜索 flag 即可得到 task3 也是同样的操作&#xff0c;载入 HxD 中搜索 flag task4 打开题目的压缩包发现被加密了&#xff0c;这个题目的标题提示的很明显&#xff0c;就是四位数加密 四位数加密的 zip…

课时17:本地变量_命令变量

2.2.3 命令变量 学习目标 这一节&#xff0c;我们从 基础知识、简单实践、小结 三个方面来学习。 基础知识 基本格式 定义方式一&#xff1a;变量名命令注意&#xff1a; 是反引号定义方式二&#xff1a;变量名$(命令)执行流程&#xff1a;1、执行 或者 $() 范围内的命令…

网络设备如何巡检?这些命令必不可少

一、查看交换机的端口使用情况&#xff1a; dis interface brief查看交换机的哪个端口是万兆端口&#xff0c;以及端口状态&#xff0c;那个端口在使用。 如下图&#xff0c;使用这个命令。 其中端口0/0/1与端口0/0/2处于使用中。其它接口没有使用&#xff1b;如果在实际项目…