Flink从入门到实践(一):Flink入门、Flink部署

文章目录

  • 系列文章索引
  • 一、快速上手
    • 1、导包
    • 2、求词频demo
      • (1)要读取的数据
      • (2)demo1:批处理(离线处理)
      • (3)demo2 - lambda优化:批处理(离线处理)
      • (4)demo3:流处理(实时处理)
      • (5)总结:实时vs离线
      • (6)demo4:批流一体
      • (7)对接Socket
  • 二、Flink部署
    • 1、Flink架构
    • 2、Standalone部署
    • 3、自运行flink-web
    • 4、通过参数传递
    • 5、通过webui提交job
    • 6、停止作业
    • 7、常用命令
    • 8、集群
  • 参考资料

系列文章索引

Flink从入门到实践(一):Flink入门、Flink部署
Flink从入门到实践(二):Flink DataStream API
Flink从入门到实践(三):数据实时采集 - Flink MySQL CDC

一、快速上手

1、导包

<!-- fink 相关依赖 -->
<dependency><groupId>org.apache.flink</groupId><artifactId>flink-clients</artifactId><version>1.18.0</version>
</dependency>

2、求词频demo

注意!自Flink 1.18以来,所有Flink DataSet api都已弃用,并将在未来的Flink主版本中删除。您仍然可以在DataSet中构建应用程序,但是您应该转向DataStream和/或Table API。

(1)要读取的数据

定义data内容:

pk,pk,pk
ruoze,ruoze
hello

(2)demo1:批处理(离线处理)

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;/*** 使用Flink进行批处理,并统计wc*** 结果:* (bye,2)* (hello,3)* (hi,1)*/
public class BatchWordCountApp {public static void main(String[] args) throws Exception {// step0: Spark中有上下文,Flink中也有上下文,MR中也有ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();// step1: 读取文件内容  ==> 一行一行的字符串而已DataSource<String> source = env.readTextFile("data/wc.data");// step2: 每一行的内容按照指定的分隔符进行拆分  1:Nsource.flatMap(new FlatMapFunction<String, String>() {/**** @param value 读取到的每一行数据* @param out 输出的集合*/@Overridepublic void flatMap(String value, Collector<String> out) throws Exception {// 使用,进行分割String[] splits = value.split(",");for(String split : splits) {out.collect(split.toLowerCase().trim());}}}).map(new MapFunction<String, Tuple2<String,Integer>>() {/**** @param value 每一个元素 (hello, 1)(hello, 1)(hello, 1)*/@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {return Tuple2.of(value, 1);}}).groupBy(0)  // step4: 按照单词进行分组  groupBy是离线的api,传下标.sum(1)  // ==> 求词频 sum,传下标.print(); // 打印}
}

(3)demo2 - lambda优化:批处理(离线处理)

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.operators.DataSource;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;/*** lambda表达式优化*/
public class BatchWordCountAppV2 {public static void main(String[] args) throws Exception {ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();DataSource<String> source = env.readTextFile("data/wc.data");/*** lambda语法: (参数1,参数2,参数3...) -> {函数体}*/
//        source.map(String::toUpperCase).print();// 使用了Java泛型,由于泛型擦除的原因,需要显示的声明类型信息source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {String[] splits = value.split(",");for(String split : splits) {out.collect(Tuple2.of(split.trim(), 1));}}).returns(Types.TUPLE(Types.STRING, Types.INT)).groupBy(0).sum(1).print();}
}

(4)demo3:流处理(实时处理)

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** 流式处理* 结果:* 8> (hi,1)* 6> (hello,1)* 5> (bye,1)* 6> (hello,2)* 6> (hello,3)* 5> (bye,2)*/
public class StreamWCApp {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();DataStreamSource<String> source = env.readTextFile("data/wc.data");source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {String[] splits = value.split(",");for(String split : splits) {out.collect(Tuple2.of(split.trim(), 1));}}).returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy(x -> x.f0) // 这种写法一定要掌握!流式的并没有groupBy,而是keyBy!根据第一个值进行sum.sum(1).print();// 需要手动开启env.execute("作业名字");}
}

(5)总结:实时vs离线

离线:结果是一次性出来的。
实时:来一个数据处理一次,数据是带状态的。

(6)demo4:批流一体

import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** 采用批流一体的方式进行处理*/
public class FlinkWordCountApp {public static void main(String[] args) throws Exception {// 统一使用StreamExecutionEnvironment这个执行上下文环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC); // 选择处理方式 批/流/自动DataStreamSource<String> source = env.readTextFile("data/wc.data");source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {String[] splits = value.split(",");for(String split : splits) {out.collect(Tuple2.of(split.trim(), 1));}}).returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy(x -> x.f0) // 这种写法一定要掌握.sum(1).print();// 执行env.execute("作业名字");}
}

(7)对接Socket

import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;/*** 使用Flink对接Socket的数据并进行词频统计** 大数据处理的三段论: 输入  处理  输出**/
public class FlinkSocket {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();/*** 数据源:可以通过多种不同的数据源接入数据:socket  kafka  text** 官网上描述的是 env.addSource(...)** socket的方式对应的并行度是1,因为它来自于SourceFunction的实现*/DataStreamSource<String> source = env.socketTextStream("localhost", 9527);System.out.println(source.getParallelism());// 处理source.flatMap((String value, Collector<Tuple2<String,Integer>> out) -> {String[] splits = value.split(",");for(String split : splits) {out.collect(Tuple2.of(split.trim(), 1));}}).returns(Types.TUPLE(Types.STRING, Types.INT)).keyBy(x -> x.f0) // 这种写法一定要掌握.sum(1)// 数据输出.print();  // 输出到外部系统中去env.execute("作业名字");}
}

二、Flink部署

1、Flink架构

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/flink-architecture/
Flink是一个分布式的带有状态管理的计算框架,可以运行在常用/常见的集群资源管理器上(YARN、K8S)。

一个JobManager(协调/分配),一个或多个TaskManager(工作)。
在这里插入图片描述
在这里插入图片描述

2、Standalone部署

按照官网下载执行即可:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/try-flink/local_installation/

可以根据官网来安装,需要下载、解压、安装。
也可以使用docker安装。

启动之后,localhost:8081就可以访问管控台了。

3、自运行flink-web

<dependency><groupId>org.apache.flink</groupId><artifactId>flink-runtime-web</artifactId><version>1.18.0</version>
</dependency>
Configuration configuration = new Configuration();
configuration.setInteger("rest.port", 8082); // 指定web端口,开启webUI,不写的话默认8081
StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnvironmentWithWebUI(configuration);
// 新版本可以直接使用getExecutionEnvironment(conf)

以上亲测并不好使……具体原因未知,设置为flink1.16版本或许就好用了。

4、通过参数传递

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();// 通过参数传递进来Flink引用程序所需要的参数,flink自带的工具类
ParameterTool tool = ParameterTool.fromArgs(args);
String host = tool.get("host");
int port = tool.getInt("port");DataStreamSource<String> source = env.socketTextStream(host, port);
System.out.println(source.getParallelism());

可以通过命令行参数:–host localhost --port 8765

5、通过webui提交job

在这里插入图片描述
在这里插入图片描述

6、停止作业

在这里插入图片描述

7、常用命令

# 查看作业列表
flink list -a  # 所有
flink list -r  # 正在运行的
# 停止作业
flink cancel <jobid># 提交job
# -c,--class <classname> 指定main方法
# -C,--classpath <url> 指定classpath
# -p,--parallelism <paralle> 指定并行度
flink run -c com.demo.FlinkDemo FlinkTest.jar 

8、集群

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/concepts/flink-architecture/#flink-application-execution

https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/overview/

单机部署Session Mode和Application Mode:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/standalone/overview/

k8s:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/native_kubernetes/

YARN:
https://nightlies.apache.org/flink/flink-docs-release-1.18/docs/deployment/resource-providers/yarn/

参考资料

https://flink.apache.org/
https://nightlies.apache.org/flink/flink-docs-stable/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461203.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

巴尔加瓦算法图解:算法运用。

树 如果能将用户名插入到数组的正确位置就好了&#xff0c;这样就无需在插入后再排序。为此&#xff0c;有人设计了一种名为二叉查找树(binary search tree)的数据结构。 每个node的children 都不大于两个。对于其中的每个节点&#xff0c;左子节点的值都比它小&#xff0c;…

MyBatisPlus之分页查询及Service接口运用

一、分页查询 1.1 基本分页查询 配置分页查询拦截器 package com.fox.mp.config;import com.baomidou.mybatisplus.extension.plugins.MybatisPlusInterceptor; import com.baomidou.mybatisplus.extension.plugins.inner.PaginationInnerInterceptor; import org.springfra…

pytorch入门第一天

今天作为入门pytorch的第一天。打算记录每天学习pytorch的一些理解和笔记&#xff0c;以用来后面回顾。当然如果能帮到和我一样的初学者&#xff0c;那也是不胜荣幸。作为一名初学者&#xff0c;难免有些地方会现错误&#xff0c;欢迎各位大佬指出 预备知识 这里主要介绍pyto…

Redis -- 安装客户端redis-plus-plus

目录 访问reids客户端github链接 安装git 如何安装&#xff1f; 下载/编译、安装客户端 安装过程中可能遇到的问题 访问reids客户端github链接 GitHub - sewenew/redis-plus-plus: Redis client written in CRedis client written in C. Contribute to sewenew/redis-p…

【精选】java初识多态 子类继承父类

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【python】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏…

计算机毕业设计Python+django医院后勤服务系统flask

结合目前流行的 B/S架构&#xff0c;将医疗后勤服务管理的各个方面都集中到数据库中&#xff0c;以便于用户的需要。该平台在确保平台稳定的前提下&#xff0c;能够实现多功能模块的设计和应用。该平台由管理员功能模块,工作人员模块&#xff0c;患者模块&#xff0c;患者家属模…

Vue 条件渲染 双向绑定

https://www.dedao.cn/ebook/reader?id5lZOKpMGr9mgdOvYa6Ej75XRo1NML3jx810k8ZVzb2nqPpDxBeJlK4AyQ8RPQv2z v-if实现条件渲染的功能。v-model实现双向数据传输。 v-model用来进行双向绑定&#xff0c;当输入框中的文字变化时&#xff0c;其会将变化同步到绑定的变量上&#…

每期100000元,第二期Agent赛题发布!

Datawhale赛事 奖金&#xff1a;10万元&#xff0c;大赛&#xff1a;Agent主题 百度智能云千帆杯AI原生应用开发挑战赛第二期赛题正式发布&#xff0c;专属于新年的贺岁文案主题&#xff0c;2月8日-2月21日&#xff0c;冠军队伍100,000元奖金。 对我这个“I”人来说&#xff0…

vue3 之 商城项目—二级分类

二级分类功能描述 配置二级路由 准备组件模版 <script setup></script><template><div class"container "><!-- 面包屑 --><div class"bread-container"><el-breadcrumb separator">"><el-bre…

交通 | 共乘出行(下):基于图结构的动态多时空供需网络的均衡度量方法

博客&#xff1a;Alex Chin, & Tony Qin. (2023.02.25). Quantifying Efficiency in Ridesharing Marketplaces. Link: https://eng.lyft.com/quantifying-efficiency-in-ridesharing-marketplaces-affd53043db2 论文&#xff1a;Chin, Alex, and Zhiwei Qin. “A Unified…

(十八)springboot实战——spring securtity注解方式的授权流程源码解析

前言 在上一节内容中&#xff0c;我们介绍了如何在FilterSecurityInterceptor过滤器中处理用户的授权流程&#xff0c;并分析了其源码&#xff0c;spring security还提供了方法级别的授权方式&#xff0c;通过EnableMethodSecurity注解启用权限认证流程&#xff0c;只需要在方…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Stepper组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Stepper组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Stepper组件 鸿蒙&#xff08;HarmonyOS&#xff09;仅能包含子组件StepperIte…