四、机器学习基础概念介绍

四、机器学习基础概念介绍

  • 1_机器学习基础概念
    • 机器学习分类
    • 1.1 有监督学习
    • 1.2 无监督学习
  • 2_有监督机器学习—常见评估方法
    • 数据集的划分
    • 2.1 留出法
    • 2.2 校验验证法(重点方法)
      • 简单交叉验证
      • K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)
      • k折交叉验证(不单独留出测试集)
      • 留一法交叉验证
      • Subject-wise交叉验证
    • 2.3 bootstrap自助法
  • 3_ 有监督机器学习—学习评价指标
    • 3.1 准确率(Accuracy)
    • 混淆矩阵
    • 3.2 精确率(Precision)
    • 3.3 召回率(Recall)
    • 3.4 特异度(Specificity)
    • 3.5 F1-值(F1-score)
    • 3,6 ROC曲线
    • 3.7 AUC面积
    • 3.8 PR曲线

1_机器学习基础概念

机器学习一般可以分为训练和测试两个步骤。
训练:让模型学习数据的特点。
测试:让模型对新的数据进行预测,对比预测结果与实际结果之间的差异。
训练集:这批数据是供模型学习使用。
测试集:这批数据是供模型测试使用。
一般情况训练集和测试集是完全不相同的,训练集和测试集发生重叠是一个严重错误!

机器学习分类

1)按照学习方式

  • 有监督学习:训练数据包含了数据本身及其对应的标签。每个训练数据都有一个明确的标识或结果。
  • 无监督学习:训练数据只包含数据本身,不包含对应的标签。例如通过聚类算法对很多段EEG信号进行聚类分析。模型能够自主的学习到一些数据的特点。(通常缺乏先验知识,因此难以对数据进行标注或者标注成本太高)
  • 半监督学习:部分训练数据有标签,部分训练数据没有标签。
  • 强化学习:强化学习的标签可以不是一个明确的标识或结果。 一般是一个反馈或者奖励。

2)按照算法的原理

  • 传统的机器学习(不包含任何人工神经网络结构,此文章的重点)
  • 深度学习

1.1 有监督学习

监督学习一般解决两个问题:分类和回归
1) 分类和回归是做什么的

  • 无论是分类还是回归,其本质都是对输入进行预测,都是有监督学习。
  • 分类是根据输出得到一个分类的类别,而回归是根据输出得到一个具体的值。

2)分类和回归的区别

  • 分类问题的输出的物体所属的类别,而回归问题的输出是物体的值。
  • 分类问题的输出是离散值(0,1,2,3,…),回归问题输出的是连续值(36.7,36.8,…)
  • eg:输入是一堆气象数据:
    如果输出是具体的天气情况:雨天?晴天?阴天? —分类—
    如果输出是具体的温度? —回归—

3)有监督学习有哪些
在这里插入图片描述

1.2 无监督学习

无监督学习一般解决两个问题:聚类和降维
1)聚类

  • 在无监督学习中,数据不会带有任何标签。将这些无标签数据分成N个分开点集(称为簇)的算法,就被称为聚类算法。
  • 常用聚类算法:K均值聚类和层次聚类
  • 聚类和分类的区别:分类是有标签的,每个物体有其具体的明确的归属。而聚类是没有标签的,根据算法不同可能会得到不通过的结果。

2)降维

  • 采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。
  • 降维是对数据本身处理,不需要标签。
  • 常用降维算法:PCA、张量分解。

2_有监督机器学习—常见评估方法

常见的评估方法有:留出法、校验验证法和自助法

数据集的划分

  • 第一种:训练集和测试集(不建议适用)
  • 第二种:训练集、验证集和测试集(正确的数据集划分方法)

训练集——学生的课本;学生 根据课本里的内容来掌握知识。
验证集——作业,通过作业可以知道 不同学生学习情况、进步的速度快慢。
测试集——考试,考的题是平常都没有见过,考察学生举一反三的能力。

正确做法: 在训练集上训练模型,在验证集上评估模型(对模型进行参数调整),最后在测试集上测试模型。

2.1 留出法

  • 将数据集D分割为两个互斥的集合:训练集S和测试集T。
  • 其中训练集S还可以进一步划分为训练集S1和验证集V。
  • 数据集划分完毕后,直接在训练集S上训练模型,在验证集S1上评估模型,在测试集T上测试模型即可。

一般情况下,会选择20%左右的数据作为测试集。
缺点:数据选择随机,结果的方差比较大

2.2 校验验证法(重点方法)

校验验证法:能充分利用数据集,但不适用于特别大的数据集

  • 一般分为:简单交叉验证,留一法交叉验证和K折交叉验证
  • 其中,K折交叉验证(单独流出测试集)(该方法为常用方法,Sklearn的默认方法)

简单交叉验证

  • 将样本全部打乱,随机的将样本数据集分为互斥的两个部分:训练集和测试集。其中训练集还可以划分为训练集和验证集。
  • 通过训练集训练模型,通过验证集选择模型参数,在测试集上评估模型的分类率。
  • 接着重新把样本数据打乱,重新划分训练集和测试集。重复上述过程若干次,此时将会得到若千个分类率。
  • 选择最大的分类率作为最终分类率。

等价于将留出法重复n次,通常用于模型预筛,可作为论文中探讨模型选择的一部分。

K折交叉验证(单独流出测试集)(常用方法/Sklearn的默认方法)

  • 将样本全部打乱,随机从样本数据集划分出互斥的两部分:训练集和测试集。从训练集D分类K大小相似的互斥子集。
  • 每次选用K-1个子集作为训练集,余下的那个子集作为验证集。这样就得到了K组训练/验证集,从而可以进行 K次训练和验证,可以返回K个模型。
  • 在测试集上分别对K个模型进行测试得到分类率,最终K次测试中分类率的均值作为最终分类率。

在这里插入图片描述k为几就是几折交叉验证,通常五折/十折。

k折交叉验证(不单独留出测试集)

在这里插入图片描述

  • 单独留出测试集的交叉验证会在进行交叉验证前单独留出测试集,后续所有的交叉验证都会最终在测试集上进行测试。
  • 而不单独留出测试集的折交叉验证不会单独留出测试集,训练集、验证集和测试集将一会通过“交叉”产生。
  • 数据量比较多,10折。10000个样本,

留一法交叉验证

  • 当K折交叉验证中的K与样本个数N相等时,此时该验证方法被称为“留一法”。
  • 理论上,留一法对数据的利用最为充分,其结果最接近实际的结果。如果样本数据比较大,会带来极大的计算量,因此留一法一般只适用于小样本量数据集。最终K个模型分类率的均值作为最终分类率。
  • 注意:在神经科学领域,一般使用留一被试法
  • 留一被试法:将同一个被试的所有的样本视为一个特定的集合,每次选择一个被试的样本作为测试集,其他被试的样本作为训练集。

Subject-wise交叉验证

在这里插入图片描述在这里插入图片描述

2.3 bootstrap自助法

3_ 有监督机器学习—学习评价指标

3.1 准确率(Accuracy)

在这里插入图片描述
准确率能够清晰的判断我们模型的表现,但有一个严重的缺陷: 在正负样本不均衡的情况下,占比大的类别往往会成为影响 Accuracy 的最主要因素,此时的 Accuracy 并不能很好的反映模型的整体情况。
例如,一个测试集有正样本99个,负样本1个。模型把所有的样本都预测为正样本,那么模型的Accuracy为99%,看评价指标,模型的效果很好,但实际上模型没有任何预测能力。

混淆矩阵

TP = True Postive = 真阳性; FP = False Positive = 假阳性
FN = False Negative = 假阴性; TN = True Negative = 真阴性
比如我们一个模型对15个样本进行预测,然后结果如下。
真实值:0 1 1 0 1 1 0 0 1 0 1 0 1 0 0
预测值:1 1 1 1 1 0 0 0 0 0 1 1 1 0 1
在这里插入图片描述

3.2 精确率(Precision)

精度(precision, 或者PPV,,positive predictive value) = TP / (TP + FP)
在上面的例子中,精度=5/(5+4)= 0.556
在这里插入图片描述

3.3 召回率(Recall)

·召回(recall,或者敏感度,sensitivity,真阳性率,TPR,True Positive Rate)= TP /(TP +FN)
在上面的例子中,召回=5/(5+2) = 0.714

在这里插入图片描述

3.4 特异度(Specificity)

特异度(specificity,或者真阴性率,TNR,True Negative Rate) = TN / (TN + FP)
在上面的例子中,特异度 = 4 / (4+2) = 0.667

3.5 F1-值(F1-score)

F1-值(F1-score) = 2TP / (2TP+FP+FN)
精确率和召回率是一对矛盾的指标,因此需要放到一起综合考虑。F1-score是精确率和召回率的调和平均值。
相对于ACC的优势:能够同时表明模型对正负样本的预测能力
在上面的例子中,F1-值 = 25 / (25+4+2) = 0.625
在这里插入图片描述

  • 敏感度和特异度有何用?
    特异度(specificity),TNR,即它反映筛检试验确定非病人的能力。
    敏感度(sensitivity,召回率),TPR,即它反映筛检试验确定病人的能力。
    敏感度高=漏诊率低,特异度高=误诊率低。
    例如:核酸检测允许比较高的误诊率,但漏诊率低一定要很低。

3,6 ROC曲线

ROC曲线(横轴:FPR;纵轴:TPR)该曲线越接近左上角越好
TPR = TP / (TP+FN); 真阳率
FPR = FP / (FP + TN); 伪阳率
在这里插入图片描述

3.7 AUC面积

AUC(ROC与坐标轴围成图像的面积)
AUC = 1,是完美分类器。
AUC = [0.85, 0.95], 效果很好
AUC = [0.7, 0.85], 效果一般
AUC = [0.5, 0.7],效果较低,但用于预测股票已经很不错了
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

3.8 PR曲线

(仅供了解,横轴是recall,纵轴是precision,越接近右上角越好)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461569.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P3647 题解

文章目录 P3647 题解OverviewDescriptionSolutionLemmaProof Main Code P3647 题解 Overview 很好的题&#xff0c;但是难度较大。 模拟小数据&#xff01;——【数据删除】 Description 给定一颗树&#xff0c;有边权&#xff0c;已知这棵树是由这两个操作得到的&#xff1…

Rust 格式化输出

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、format! 宏二、fmt::Debug三、fmt::Display四、? 操作符 循环打印 前言 Rust学习系列-本文根据教程学习Rust的格式化输出&#xff0c;包括fmt::Debug&…

Web Services 服务 是不是过时了?创建 Web Services 服务实例

Web Services 是不是过时了&#xff1f; 今天是兔年最后一天&#xff0c;先给大家拜个早年 。 昨天上午视频面试一家公司需要开发Web Services 服务&#xff0c;这个也没有什么&#xff0c;但还需要用 VB.net 开发。这个是多古老的语言了&#xff0c;让我想起来了 10年 前 写 …

【RT-DETR改进涨点】更加聚焦的边界框损失Focaler-IoU、InnerFocalerIoU(二次创新)

一、本文介绍 本文给大家带来的改进机制是更加聚焦的边界框损失Focaler-IoU已经我进行二次创新的InnerFocalerIoU同时本文的内容支持现阶段的百分之九十以上的IoU,比如Focaler-IoU、Focaler-ShapeIoU、Inner-Focaler-ShapeIoU包含非常全的损失函数,边界框的损失函数只看这一…

vue3+vite+ts 配置commit强制码提交规范配置 commitlint

配置 git 提交时的 commit 信息&#xff0c;统一提交 git 提交规范 安装命令: npm install -g commitizen npm i cz-customizable npm i commitlint/config-conventional commitlint/cli -D 文件配置 根路径创建文件 commitlint.config.js module.exports {// 继承的规…

江科大STM32 终

目录 SPI协议10.1 SPI简介W25Q64简介10.3 SPI软件读写W25Q6410.4 SPI硬件外设读写W25Q64 BKP备份寄存器、PER电源控制器、RTC实时时钟11.0 Unix时间戳代码示例&#xff1a;读写备份寄存器BKP11.2 RTC实时时钟 十二、PWR电源控制12.1 PWR简介代码示例&#xff1a;修改主频12.3 串…

位运算 二进制中1的个数

求n的第k位数字: n >> k & 1 返回n的最后一位1&#xff1a;lowbit(n) n & -n 二进制中1的个数 C代码实现: #include<iostream> using namespace std; const int N1000002; int lowbit(int x){return x&-x; } int a[N]; int main(){int n;cin>>…

【Linux】进程学习(二):进程状态

目录 1.进程状态1.1 阻塞1.2 挂起 2. 进程状态2.1 运行状态-R进一步理解运行状态 2.2 睡眠状态-S2.3 休眠状态-D2.4 暂停状态-T2.5 僵尸状态-Z僵尸进程的危害 2.6 死亡状态-X2.7 孤儿进程 1.进程状态 1.1 阻塞 阻塞&#xff1a;进程因为等待某种条件就绪&#xff0c;而导致的…

Spring Boot + 七牛OSS: 简化云存储集成

引言 Spring Boot 是一个非常流行的、快速搭建应用的框架&#xff0c;它无需大量的配置即可运行起来&#xff0c;而七牛云OSS提供了稳定高效的云端对象存储服务。利用两者的优势&#xff0c;可以为应用提供强大的文件存储功能。 为什么选择七牛云OSS? 七牛云OSS提供了高速的…

电商小程序05用户注册

目录 1 搭建页面2 设置默认跳转总结 我们上一篇拆解了登录功能&#xff0c;如果用户没有账号就需要注册了。本篇我们介绍一下注册功能的实现。 1 搭建页面 打开应用&#xff0c;点击左上角的新建页面 输入页面的名称&#xff0c;用户注册 删掉网格布局&#xff0c;添加表单容…

maven-install-plugin:2.4:install (default-cli) on project ability-dispatch:

IDEA&#xff0c;instal时报错 &#xff0c;错误 信息如下&#xff1a; Failed to execute goal org.apache.maven.plugins:maven-install-plugin:2.4:install (default-cli) on project ability-dispatch: The packaging for this project did not assign a file to the buil…

Unity3d Shader篇(六)— BlinnPhong高光反射着色器

文章目录 前言一、BlinnPhong高光反射着色器是什么&#xff1f;1. BlinnPhong高光反射着色器的工作原理2. BlinnPhong高光反射着色器的优缺点优点缺点 3. 公式 二、使用步骤1. Shader 属性定义2. SubShader 设置3. 渲染 Pass4. 定义结构体和顶点着色器函数5. 片元着色器函数 三…