【深度学习】pytorch 与 PyG 安装(pip安装)

【深度学习】pytorch 与 PyG 安装(pip安装)

  • 一、PyTorch安装和配置
    • (一)、安装 CUDA
    • (二)、安装torch、torchvision、torchaudio三个组件
      • (1)下载镜像文件
      • (2)创建一个新的虚拟环境
      • (3)加载.whl文件并测试安装是否成功
  • 二、PyG 安装
    • (一)安装 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv
      • 测试:
    • 一般方式(电脑已安装好pytorch)

一、PyTorch安装和配置

深度神经网络是一种目前被广泛使用的工具,可以用于图像识别、分类,物体检测,机器翻译等等。深度学习(DeepLearning)是一种学习神经网络各种参数的方法。因此,我们将要介绍的深度学习,指的是构建神经网络结构,并且运用各种深度学习算法训练网络参数,进而解决各种任务。本文从PyTorch环境配置开始。PyTorch是一种Python接口的深度学习框架,使用灵活,学习方便。还有其他主流的深度学习框架,例如Caffe,TensorFlow,CNTK等等,各有千秋。笔者认为,初期学习还是选择一种入门,不要期望全都学会。须知,发力集中才能深入挖掘。乱花渐欲迷人眼,选择适合自己的,从一而终,相信会对科研大有裨益!

(一)、安装 CUDA

一、查看 cuda 版本

在命令行中输入 nvcc --version

nvcc --version

在这里插入图片描述

注:电脑环境此前安装好了 cuda,可参考下述教程安装cuda

https://blog.csdn.net/weixin_43848614/article/details/117221384

(二)、安装torch、torchvision、torchaudio三个组件

以python3.8为例,当然其他版本也适用。

经验:

  1. 安装cuda10.2(又写作cu102)版本对应的三个组件,是比较稳妥的

  2. 国内源容易在安装时自动替换为cpu版本,因此从pytorch官网下载较稳妥

  3. 建议使用pip安装,conda安装很可能会安装为cpu版本

(1)下载镜像文件

点击网址,下载相关镜像文件:https://download.pytorch.org/whl/cu102

在这里插入图片描述
首先选择torch,ctrl + F 搜索 [cu102-cp38-cp38-win] 这里cu102 是我们下载的 CUDA 10.2 版本,cp38-cp38 是说我们的 Python 版本是 3.8。如果要安装python3.9那将cp3.8改为cp3.9即可。

whl文件是一个压缩包,包含了所需的所有安装文件和元数据。它其中的文件是编译过得到的二进制文件,而不是C++ 源码。如果是后者,显然系统还需要 C++ 的编译器才能运行文件。

在这里插入图片描述单击即可下载,这里torch版本为1.10.0,我们要去官网查找该版本对应的torchvision 和torchaudio版本。ctrl + F 搜索 [pip install torch==1.10.0] 并且对应cuda为10.2。

在这里插入图片描述
因此torchvision需要安装0.11.0版本,torchaudio需要安装0.10.0版本。

在之前的网址中选择torchaudio,ctrl + F 搜索 [cu102-cp38-cp38-win],选择版本为0.10.0的。高亮处单击下载。

在这里插入图片描述
同理在之前的网址中选择torchvision,ctrl + F 搜索 [cu102-cp38-cp38-win],选择版本为0.11.0的。高亮处单击下载。

在这里插入图片描述

下载了3个.whl文件,建议都安装到同一个文件夹下,比如D:\pytorch_whl

下载完成后,将三个镜像文件放入一个文件夹,推荐创建一个新的虚拟环境安装。

(2)创建一个新的虚拟环境

pip 方式的创建虚拟环境见下方链接内容

https://blog.csdn.net/weixin_43848614/article/details/131906596
在这里插入图片描述

在这里插入图片描述

本人习惯使用pip方式,如果安装 Anaconda 的话,使用conda的命令创建虚拟环境。

Anaconda 操作:

默认大家都安装好Anaconda了。在开始菜单中搜索anaconda Prompt,点击进入。

创建python虚拟环境:

conda create -n your_env_name python=x.x

这里your_env_name表示你即将安装的虚拟环境的名字,x.x表示python版本。我这里设置名称为gym_gpu,安装的python版本为3.8,于是输入 conda create -n gym_gpu python=3.8 后回车:

conda activate your_env_name

(3)加载.whl文件并测试安装是否成功

pip install F:\pytorch_whl\torch-1.10.0+cu102-cp38-cp38-win_amd64.whl
pip install F:\pytorch_whl\torchaudio-0.10.0+cu102-cp38-cp38-win_amd64.whl
pip install F:\pytorch_whl\torchvision-0.11.0+cu102-cp38-cp38-win_amd64.whl

在这里插入图片描述

安装过程耐心等待,中间会从安装某些比较大的第三方库。安装结束后需要测试是否成功安装gpu版本的pytorch。

#接着检查cuda,cudnn版本
#首先进入python的交互模式
#python交互模式,直接输入python即可进入#接着输入下述代码
python
import torch #导入pytorch库
print(torch.cuda.is_available()) #查看是否有cuda
print(torch.backends.cudnn.is_available()) #查看是否有cudnn
print(torch.cuda_version) #打印cuda的版本
print(torch.backends.cudnn.version()) #打印cudnn的版本
#结果如下图

在这里插入图片描述

二、PyG 安装

PyG 全称是PyTorch-Geometric,是一个PyTorch基础上的一个库,专门用于图形式的数据,可以加速图学习算法的计算过程,比如稀疏化的图等。

(一)安装 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv

接上文内容,在安装 pytorch 后安装 PyG

进入下述网址后,下载 torch_scatter 、torch_sparse 、torch_cluster 、torch_spline_conv 四个包:

https://data.pyg.org/whl/torch-1.10.0%2Bcu102.html

在这里插入图片描述

下载后将四个包放置在同一个文件夹。

在这里插入图片描述

可以使用绝对路径安装,也可以cd 安装包的位置后,使用pip安装(注:)

cd /d D:\XXX\XX\  # 安装包所存的位置
pip install torch_scatter-2.0.5-cp38-cp38-win_amd64.whl
pip install torch_sparse-0.6.7-cp38-cp38-win_amd64.whl
pip install torch_cluster-1.5.7-cp38-cp38-win_amd64.whl
pip install torch_spline_conv-1.2.0-cp38-cp38-win_amd64.whl

在这里插入图片描述
最后选择好版本PyG版本直接安装即可。

pip install torch-geometric

测试:

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import softmax, add_remaining_self_loopsclass GATConv(MessagePassing):def __init__(self, in_feats, out_feats, alpha, drop_prob=0.0):super().__init__(aggr="add")self.drop_prob = drop_probself.lin = nn.Linear(in_feats, out_feats, bias=False)self.a = nn.Parameter(torch.zeros(size=(2*out_feats, 1)))self.leakrelu = nn.LeakyReLU(alpha)nn.init.xavier_uniform_(self.a)def forward(self, x, edge_index):edge_index, _ = add_remaining_self_loops(edge_index)# 计算 Whh = self.lin(x)# 启动消息传播h_prime = self.propagate(edge_index, x=h)return h_primedef message(self, x_i, x_j, edge_index_i):# 计算a(Wh_i || wh_j)e = torch.matmul((torch.cat([x_i, x_j], dim=-1)), self.a)e = self.leakrelu(e)alpha = softmax(e, edge_index_i)alpha = F.dropout(alpha, self.drop_prob, self.training)return x_j * alphaif __name__ == "__main__":conv = GATConv(in_feats=3, out_feats=3, alpha=0.2)x = torch.rand(4, 3)edge_index = torch.tensor([[0, 1, 1, 2, 0, 2, 0, 3], [1, 0, 2, 1, 2, 0, 3, 0]], dtype=torch.long)x = conv(x, edge_index)print(x.shape)

在这里插入图片描述

一般方式(电脑已安装好pytorch)

如果你的电脑此前已经安装好了 pytorch,使用下述步骤进行安装

  1. 首先检查 Pytorch 的版本:
python -c "import torch; print(torch.__version__)"
  1. 检查一下 cuda 版本
python -c "import torch; print(torch.version.cuda)"
  1. 然后按照你的 Pytorch 版本和 cuda 版本,下载相应的轮子(whl文件)
pip install pyg-lib torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-${TORCH}+${CUDA}.html

把 ${TORCH} 换成 pytorch 的主版本号.次版本号.0。不要管补丁版本!比如你的 pytorch 版本是 1.13.1,这里只需要填 1.13.0 . 其实你可以先访问这个网址,看看它是不是存在。

软件包的命名方式:主版本号.次版本号.补丁版本号。

把 ${CUDA} 换成 cuda 版本或者 cpu。我在这里遇到了另一个坑。我是在 amazon SageMaker Studio Lab里运行的 jupyter lab,开的是 CPU 实例,因此GPU是不可用的(可以用 torch.cuda.is_available()查看)。

命令示例:

pip install pyg-lib torch-scatter torch-sparse -f https://data.pyg.org/whl/torch-1.13.0+cpu.html

安装完毕后,再安装 torch-geometric 即可。

pip install torch-geometric

参考:

https://blog.csdn.net/zzlyw/article/details/78674543

https://zhuanlan.zhihu.com/p/612181449

https://repo.anaconda.com/archive/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/461862.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端高频面试题--Vue基础篇】

🚀 作者 :“码上有前” 🚀 文章简介 :前端高频面试题 🚀 欢迎小伙伴们 点赞👍、收藏⭐、留言💬前端高频面试题--Vue基础篇 Vue基本原理双向绑定与MVVM模型Vue的优点计算属性与监听属性计算属性监…

使用QZipWriter来压缩文件

Qt 自带的压缩QZipWriter和解压QZipReader详解~含Demo-CSDN博客 示例代码1&#xff1a; 压缩一个文件&#xff1a; #include "qzipwriter_p.h" #include "qfileinfo.h" #include <QDebug> int main(int argc, char *argv[]) {QApplication a(argc…

机器学习8-决策树

决策树&#xff08;Decision Tree&#xff09;是一种强大且灵活的机器学习算法&#xff0c;可用于分类和回归问题。它通过从数据中学习一系列规则来建立模型&#xff0c;这些规则对输入数据进行递归的分割&#xff0c;直到达到某个终止条件。 决策树的构建过程&#xff1a; 1.…

1、卷积分类器

用 Kera 创建你的第一个计算机视觉模型。 数据集下载地址:链接:https://pan.quark.cn/s/f9a1428cf6e3 提取码:XJcv 文章目录 欢迎来到计算机视觉!简介卷积分类器训练分类器示例 - 训练一个卷积分类器步骤1 - 加载数据步骤2 - 定义预训练基步骤3 - 附加头步骤4 - 训练结论欢…

Composition Local

1.显示传参 package com.jmj.jetpackcomposecompositionlocalimport org.junit.Testimport org.junit.Assert.*/*** 显示传参*/ class ExplicitText {private fun Layout(){var color:String "黑色";//参数需要通过层层传递&#xff0c;比较繁琐Text(color)Grid(c…

考研数据结构笔记(2)

线性表 线性表的定义线性表的基本操作lnitList(&L)DestroyList(&L)Listlnsert(&L,i,e)ListDelete(&L,i,&e)LocateElem(L,e)GetElem(L,i)Length(L)PrintList(L)Empty(L)Tips:引用值 小结 根据数据结构的三要素–逻辑结构、数据的运算、存储结构&#xff0c;…

【Linux】SystemV IPC

进程间通信 一、SystemV 共享内存1. 共享内存原理2. 系统调用接口&#xff08;1&#xff09;创建共享内存&#xff08;2&#xff09;形成 key&#xff08;3&#xff09;测试接口&#xff08;4&#xff09;关联进程&#xff08;5&#xff09;取消关联&#xff08;6&#xff09;释…

攻防世界 CTF Web方向 引导模式-难度1 —— 1-10题 wp精讲

目录 view_source robots backup cookie disabled_button get_post weak_auth simple_php Training-WWW-Robots view_source 题目描述: X老师让小宁同学查看一个网页的源代码&#xff0c;但小宁同学发现鼠标右键好像不管用了。 不能按右键&#xff0c;按F12 robots …

GEE Colab——如何利用Matplotlib在colab中进行图形制作

在colab中绘制图表 笔记本的一个常见用途是使用图表进行数据可视化。Colaboratory 提供多种图表工具作为 Python 导入,让这一工作变得简单。 Matplotlib Matplotlib 是最常用的图表工具包,详情请查看其文档,并通过示例获得灵感。 线性图 线性图是一种常见的图表类型,用…

8个简约精美的WordPress外贸网站主题模板

Simplify WordPress外贸网站模板 Simplify WordPress外贸网站模板&#xff0c;简洁实用的外贸公司wordpress外贸建站模板。 查看演示 Invisible Trade WP外贸网站模板 WordPress Invisible Trade外贸网站模板&#xff0c;做进出口贸易公司官网的wordpress网站模板。 查看演…

Jupyter Notebook如何在E盘打开

Jupyter Notebook如何在E盘打开 方法1&#xff1a;方法2&#xff1a; 首先打开Anaconda Powershell Prompt, 可以看到默认是C盘。 可以对应着自己的界面输入&#xff1a; 方法1&#xff1a; (base) PS C:\Users\bella> E: (base) PS E:\> jupyter notebook方法2&#x…

CTFSHOW命令执行web入门29-54

description: >- 这里就记录一下ctfshow的刷题记录是web入门的命令执行专题里面的题目,他是有分类,并且覆盖也很广泛,所以就通过刷这个来,不过里面有一些脚本的题目发现我自己根本不会笑死。 如果还不怎么知道写题的话,可以去看我的gitbook,当然csdn我也转载了我自己的…