5G NR 信道号计算

一、5G NR的频段 增加带宽是增加容量和传输速率最直接的方法,目前5G最大带宽将会达到400MHz,考虑到目前频率占用情况,5G将不得不使用高频进行通信。

  3GPP协议定义了从Sub6G(FR1)到毫米波(FR2)的5G目标频谱。 其中FR1是5G的核心频段,以3.5G(又称C波段)附近的频谱资源作为5G部署的黄金频段。 FR2由于频谱高,衰减快,则作为5G的辅助频段,用于热点区域速率提升。

 3GPP 协议定义的5G频谱FR1如下,相比于4G LTE的频段做了部分合并、拆分与添加。

 其中SUL(辅助上行)用于上下行解耦以提升上行边缘覆盖 目前中国三家运营商分得的FR1频谱如下: 其中中国联通和中国电信达成5G共建协议,可以共享3.5G频谱上200Mhz的带宽,同时3.5G上产业链较为成熟,拥有很大的优势。 而移动则继续在2.6G频谱上进行深耕。

 FR2是5G的辅助频段,用于热点区域速率提升。 当前版本毫米波定义的频段只有四个,考虑到FDD需要成对的大带宽,因而FR2四个频段均为TDD模式,最大小区带宽支持400MHz。

 二、5G NR频点的计算 3GPP定义了Global raster(全局的频点栅格,用ΔFGlobal表示),频段越高,栅格越大,用于计算5G频点号。 不再像LTE那样需要根据使用的band号和对应的起始频点来查表计算。 5G的频点计算公式如下:

  举例来说明:

1)现在使用的中心频率是1920Mhz,那么对应的频点逻辑信道号NREF=0+(1920-0)Mhz/5khz=38400。

2)再如现在使用的中心频率是4800Mhz,那么对应的频点NREF=600000+(4800-3000)Mhz/15khz=720000。 反之亦然,假设给定频点号2100000,那么知道其落在2016667~3279167范围内,其ΔFGlobal=60kHz,那么对应的中心频率=24250M+(2100000-2016667)*60k=29249.98Mhz。 需要注意的是:

实际组网中中心频点的取值并不是连续的。 3GPP又定义了5G频点栅格Channel Raster来规范小区中心频段的取值。 Channel raster用于指示空口信道的频域位置,进行资源映射(RE和RB的映射),即小区的实际的频点位置必须满足channel raster的映射 以n1为例,5G小区使用该频段时,中心频点号的取值只能以20为单位来选取。 n1为2110~2170M,在0~3000M范围内,频点栅格为5khz,如果选取2110Mhz(对应频点422000)作为第一个中心频率点,而下一个中心频率点只能是2110.1Mhz(对应频点422020),而2110.005、2110.01……2110.095(对应频点422001-422019)均不能作为小区的中心频率点。

  此外,我们看到n41、n77、n78和n79的ΔF的取值有两种,具体使用哪种基于如下原则: 当小区中的SCS等于较高的那个时,采用高的channel raster,其它情况,使用低的channel raster。 如上表所示,如果当前小区的信道的SCS为30kHz,那么channelraster就是30KHz,否则channel raster为15KHz
 

channel raster 是RF reference frequencies的子集,对每个band来说中心频点不能随意选,需要按照一定起点和步长选取,具体可用的见下表。

ΔFRaster为间隔粒度,大于等于ΔFGlobal。
比如对n41,如果步长是3,换算出对应的频率的步长是3Fglobal=3×5=15Khz;如果步长是6,换算出对应的频率的步长是6Fglobal=6×5=30Khz,这里有两种ΔFRaster,根据 I 确定。未找到 I 如何确定。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/462205.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL优化器

优化器 MySQL存储引擎中存在了一个可插拔的优化器OPTIMIZER_TRACE,可以看到内部查询计划的TRACE信息,从而可以知道MySQL内部执行过程 查询优化器状态 show variables like optimizer_trace;Variable_name Valueoptimizer_trace enabledoff,one_lineoff…

【闲谈】初识深度学习

在过去的十年中,深度学习彻底改变了我们处理数据和解决复杂问题的方式。从图像识别到自然语言处理,再到游戏玩法,深度学习的应用广泛且深入。本文将探讨深度学习的基础知识、关键技术以及最新的研究进展,为读者提供一个全面的视角…

Hexo更换Matery主题

引言 在数字化时代,拥有一个个人博客已经成为许多人展示自己技能、分享知识和与世界互动的重要方式。而在众多博客平台中,Hexo因其简洁、高效和易于定制的特点而备受青睐。本文将详细介绍如何为你的Hexo博客更换主题,让你的个人博客在互联网…

【stomp实战】websocket原理解析与简单使用

一、WebSocket 原理 WebSocket是HTML5提供的一种浏览器与服务器进行全双工通讯的网络技术,属于应用层协议。它基于TCP传输协议,并复用HTTP的握手通道。浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接, 并…

多线程基础详解(看到就是赚到)

🎥 个人主页:Dikz12📕格言:那些在暗处执拗生长的花,终有一日会馥郁传香欢迎大家👍点赞✍评论⭐收藏 目录 创建线程 1.创建类继承Thread,重写run() 2.实现Runnable,重写run() 3.继承Thread,使用匿名内部类 …

全新抖音快手小红书去水印系统网站源码 | 支持几十种平台

全新抖音快手小红书去水印系统网站源码 | 支持几十种平台

备战蓝桥杯---动态规划(基础1)

先看几道比较简单的题&#xff1a; 直接f[i][j]f[i-1][j]f[i][j-1]即可&#xff08;注意有马的地方赋值为0&#xff09; 下面是递推循环方式实现的AC代码&#xff1a; #include<bits/stdc.h> using namespace std; #define int long long int a[30][30]; int n,m,x,y; …

移动端设置position: fixed;固定定位,底部出现一条缝隙,不知原因,欢迎探讨!!!

1、问题 在父盒子中有一个子盒子&#xff0c;父盒子加了固定定位&#xff0c;需要子盒子上下都有要边距&#xff0c;用margin或者padding挤开时&#xff0c;会出现缝隙是子盒子背景颜色的。 测试过了&#xff0c;有些手机型号有&#xff0c;有些没有&#xff0c;微信小程序同移…

Python数据可视化库之ggplot使用详解

概要 数据可视化是数据分析和数据沟通的关键部分。Python 作为一门强大的数据科学和数据分析工具,提供了多种数据可视化库,其中之一就是 ggplot。ggplot 是一个基于 ggplot2 的 Python 数据可视化库,它可以创建精美且高度可定制的图表,以更好地理解和传达数据。本文将深入…

【Python/网络安全】 Git漏洞之Githack工具基本安装及使用详析

[Python/网络安全] Git漏洞之Githack工具基本安装及使用详析 前言安装步骤工具使用实战总结 前言 Git是一个非常流行的开源分布式版本控制系统&#xff0c;它被广泛用于协同开发和代码管理。许多网站和应用程序都使用Git作为其代码管理系统&#xff0c;并将其部署到生产环境中…

GC调优工具

1、jstat 2、VisualVM GC tool插件 插件下载地址&#xff1a;https://blog.csdn.net/jushisi/article/details/109655175 3、Prometheus和Grafana监控

数据库管理-第148期 最强Oracle监控EMCC深入使用-05(20240208)

数据库管理148期 2024-02-08 数据库管理-第148期 最强Oracle监控EMCC深入使用-05&#xff08;20240208&#xff09;1 性能主页2 ADDM Spotlight3 实时ADDM4 数据库的其他5 主机总结 数据库管理-第148期 最强Oracle监控EMCC深入使用-05&#xff08;20240208&#xff09; 作者&am…