微服务学习 | Spring Cloud 中使用 Sentinel 实现服务限流

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站https://www.captainbed.cn/kitie。

目录

前言

通过代码实现限流

定义资源

通过代码定义资源

通过注解方式定义资源

定义限流规则

通过控制台实现限流

下载并运行Sentinel控制台

在程序中加入并配置 Sentinel

设置规则

新增限流规则


前言

限流的目的是通过对并发访问/请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理

Sentinel是阿里中间件团队开源的,面向分布式服务架构的轻量级高可用流量控制组件,主要以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度来帮助用户保护服务的稳定性。

在 Sentinel 中,实现限流的方法有以下两种:

  1. 通过代码方法实现限流。
  2. 通过 Sentinel 控制台设置实现限流。

接下来我们讲解以上两种方式形式如何实现限流保护

通过代码实现限流

通过代码实现限流需要以下两步方可实现:

  1. 定义资源
  2. 定义限流规则

定义资源

定义资源可以通过代码方式或注解方式来实现,具体实现如下。

通过代码定义资源

可以通过代码的的方式 SphU.entry("resourceName") 来定义资源,具体实现代码如下:

@RequestMapping("/getuser")
public String getUser() {try (Entry entry = SphU.entry("getuser")) {// 被保护逻辑return "User";} catch (Exception e) {// 限流之后的业务逻辑return "限流";}
}

PS:SphU 是 Sentinel Protection Hotspot Util 的缩写,Sentinel 热点保护工具类。

通过注解方式定义资源

通过注解 @SentinelResource 也可以实现资源的定义,如下代码所示:

// 定义资源和限流后触发的方法
@SentinelResource(value = "resourceName", blockHandler = "myBlockHandler")
@RequestMapping("/getnamebyid")
public String getNameById(Integer id) {
return id + "-lei";
}
// 限流后触发的方法
public String myBlockHandler(Integer id, BlockException blockException) {String msg = "Do myBlockHandler method.";System.out.println(msg);return msg;
}

其中,value 属性定义的资源名称,blockHandler 定义的是原方法被限流/降级/系统保护之后执行的方法。

注意事项

  1. 定义的限流方法 myBlockHandler 必须和原方法的返回值、参数保持一致,否则会报错(Sentinel通过反射调用的限流方法);
  2. 限流方法必须添加 BlockException 参数,不然会因为找不到合适的限流后执行方法,而提示报错;

@SentinelResource 注解属性说明:

  • value:资源名称,必需项(不能为空)。
  • entryType:资源调用的流量类型:入口流量(EntryType.IN)和出口流量(EntryType.OUT),注意系统规则只对 IN 生效。
  • blockHandler/blockHandlerClass: 限流和熔断时执行 BlockException 所对应的方法名。
  • fallback/fallbackClass:非 BlockException 时,其他非限流、非熔断时异常对应的方法。
  • exceptionsToIgnore:用于指定哪些异常被排除掉,不会计入异常统计中,也不会进入 fallback 逻辑中,而是会原样抛出。

注:1.6.0 之前的版本 fallback 函数只针对熔断降级异常(DegradeException)进行处理,不能针对业务异常进行处理。

定义限流规则

在 Spring Boot 项目中,只需要将限流规则添加到项目启动时执行即可,如下代码所示:

public static void main(String[] args) {SpringApplication.run(SentinelDemoApplication.class, args);// 加载限流规则initFlowRules();
}

而限流规则定义如下:

private static void initFlowRules() {List<FlowRule> rules = new ArrayList<>();FlowRule rule = new FlowRule();rule.setResource("resourceName"); // 资源名称rule.setGrade(RuleConstant.FLOW_GRADE_QPS); // 根据 QPS 限流rule.setCount(1); // QPS 阈值【每秒只允许通过一个请求】rule.setStrategy(RuleConstant.STRATEGY_DIRECT); // 调用关系限流策略【非必须设置】rule.setControlBehavior(RuleConstant.CONTROL_BEHAVIOR_DEFAULT); // 流控效果【非必须设置】rule.setClusterMode(false); // 是否集群限流【非必须设置,默认非集群】rules.add(rule);FlowRuleManager.loadRules(rules);
}

其中:

  • setStrategy:设置调用关系限流策略,包含的值有:
    • 直接(RuleConstant.STRATEGY_DIRECT)【默认值】
    • 链路(RuleConstant.STRATEGY_RELATE
    • 关联(RuleConstant.STRATEGY_CHAIN
  • setControlBehavior:设置流控效果,包含的值有:
    • 直接拒绝(RuleConstant.CONTROL_BEHAVIOR_DEFAULT)【默认值】
    • 冷启动(RuleConstant.CONTROL_BEHAVIOR_WARM_UP
    • 匀速启动(RuleConstant.CONTROL_BEHAVIOR_RATE_LIMITER
    • 冷启动+匀速启动(RuleConstant.CONTROL_BEHAVIOR_WARM_UP_RATE_LIMITER

通过控制台实现限流

Sentinel 还可以使用控制台的方式进行限流,这样子可以减少对原项目代码的入侵,不过默认情况下限流规则是保存在内存中,所以重启之后规则会丢失,默认情况下下的推送流程如下:

它的实现步骤如下:

  1. 下载并运行 Sentinel Dashboard(控制台)。
  2. 在程序中加入并配置 Sentinel Dashboard。
  3. 在 Sentinel Dashboard 配置限流/熔断等规则。
  4. 验证效果。

下载并运行Sentinel控制台

我们可以从 Sentinel 官方仓库下载最新版本的控制台 jar 包,访问地址:github.com/sentinel

使用如下命令启动控制台:

java -jar sentinel-dashboard.jar --server.port=18080

从 Sentinel 1.6.0 起,Sentinel 控制台引入基本的登录功能,默认用户名和密码都是 sentinel。可以参考 鉴权模块文档 配置用户名和密码,命令如下:

java -Dserver.port=18080 -Dsentinel.dashboard.auth.username=sentinel -Dsentinel.dashboard.auth.password=123456 -jar sentinel-dashboard.jar

Sentinel 控制台启动时的可选配置项:

配置项默认值描述
server.port8080指定端口
csp.sentinel.dashboard.serverlocalhost:8080指定地址
project.name-指定程序的名称
sentinel.dashboard.auth.usernamesentinelDashboard 登录账号(需要版本1.6+)
sentinel.dashboard.auth.passwordsentinelDashboard 登录密码(需要版本1.6+)
server.servlet.session.timeout30分钟登录 Session 过期时间(需要版本1.6+)
配置为 7200 表示 7200 秒
配置为 60m 表示 60 分钟
在程序中加入并配置 Sentinel

在需要进行流控的项目中加入 Sentinel 依赖:

<dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

在项目中配置 Sentinel Dashboard 地址:

spring:application:name: sentinel-dashboard-democloud:sentinel:transport:dashboard: localhost:18080client-ip: 127.0.0.1 port: 8721heartbeat-interval-ms: 10000

其中,只有 dashboard 是必输项,其他的都可以省略,他们的含义如下:

  • dashboard:sentinel 控制台地址。
  • client-ip:当前客户端 IP,不设置自动选择一个 IP 注册。
  • port:与 sentinel 通讯的端口,如不设置,会从 8719 开始扫描,依次 +1,直到找到未被占用的接口。
  • heartbeat-interval-ms:心跳发送周期,默认值是 10s。

设置规则

新增限流规则

参数说明:

  • 针对来源:Sentinel 可以针对调用者进行限流,填写具体微服务名时,指定对此微服务进行限流 ,默认值为 default(不区分来源,全部限制)。
  • 阈值类型/单机阈值:用于限制和控制流量的一种度量标准的类型,可以为 QPS(Queries Per Second,每秒请求数)也可以为“并发线程数”。
    • QPS:每秒请求达到此值开始限流。
    • 并发线程数:请求此资源的线程达到某个值时限流。每个请求分配一个线程,当请求执行时间长时,很快就会触发限流,相反如果线程执行速度快,那么限流触发就会概率就会比较小。
  • 流控模式:流量控制模式。
    • 直接:接口达到限流条件时,直接限流。
    • 关联:当关联的资源达到阈值时,就限流自己。
    • 链路:指定资源从入口资源进来的流量,如果达到阈值,就进行限流。
  • 流控效果:流量控制效果。
    • 快速失败:该方式是默认的流量控制方式,比如 QPS 超过任意规则的阈值后,新的请求就会被立即拒绝,拒绝方式为抛出 FlowException。这种方式适用于对系统处理能力确切已知的情况下,比如通过压测确定了系统的准确水位时。
    • 排队等待(也叫匀速通过):排队等待会严格控制请求通过的间隔时间,让请求稳定且匀速的通过,可以用来处理间隔性突发的高流量。例如抢票软件,在某一秒或者一分钟内有大量的请求到来,而接下来的一段时间里处于空闲状态,我们希望系统能够在接下来的空余时间里也能出去这些请求,而不是直接拒绝。在设置排队等待时,需要填写超时时间。
    • Warm Up:此项叫做预热或者冷启动方式,此模式主要是防止流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮,通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。当使用 Warm Up 模式时,我们还需要指定启动时开放的 QPS 比例(DEFAULT_COLD_FACTOR,默认值为 3,代表 30%),以及系统预热所需时长(warmUpPeriodSec,默认值是 10 秒)。

限流页面当“是否集群”选中之后,就会是这样的界面:

其中最后一项“失败退化”中的 Token Server 含义如下: Token Server 是 Sentinel 用于集群流量控制的关键组件,它负责分发令牌并进行流量控制。当 Sentinel 的应用程序配置为集群限流模式时,它会向 Token Server 请求令牌,然后根据令牌情况来进行流量控制。如果 Token Server 不可用,可能是由于网络故障、Token Server 实例崩溃等原因,这时候无法从 Token Server 获取令牌。 Token Server 配置的含义如下:

  • 当配置选项为"是"时:表示当 Token Server 不可用时,Sentinel 会自动切换为单机限流模式。在单机限流模式中,Sentine 会从本地的限流规则进行流量控制,不再依赖 Token Server。这样可以保证即使 Token Server 不可用,也能够继续对流量进行限制。
  • 当配置选项为"否"时:表示当 Token Server 不可用时,Sentinel 不会自动切换为单机限流模式,流量控制会被暂停,即无法进行限流,可能会导致服务负载过高。

自定义限流错误信息

当请求被限流后,返回的响应信息往往不是很友好,我们这里统一处理返回异常信息,实现BlockExceptionHandler接口

@Configuration
public class MySentinelConfig implements BlockExceptionHandler {@Overridepublic void handle(HttpServletRequest request, HttpServletResponse response, BlockException e) throws Exception {// BlockException 异常接口,其子类为Sentinel五种规则异常的实现类// AuthorityException 授权异常// DegradeException 降级异常// FlowException 限流异常// ParamFlowException 参数限流异常// SystemBlockException 系统负载异常String msg = null;if (e instanceof FlowException) {msg = "限流";} else if (e instanceof DegradeException) {msg = "降级";} else if (e instanceof ParamFlowException) {msg = "热点参数限流";} else if (e instanceof SystemBlockException) {msg = "系统规则(负载/...不满足要求)";} else if (e instanceof AuthorityException) {msg = "授权规则不通过";}R error = R.error(500, msg);response.setCharacterEncoding("UTF-8");response.setContentType("application/json");response.getWriter().write(JSON.toJSONString(error));}
}

测试 

当访问超出阈值时,响应返回自定义错误信息

{"msg":"限流","code":500}

总结

本篇文章主要介绍了Sentinel的两种实现限流的方式,除此之外当然还有许多功能与限流规则,这里由于篇幅问题就不一一介绍了,有兴趣的朋友可以自己探索一下。我个人觉得Sentinel是一个非常优秀的组件,比原来用的Hystrix的确有着非常大的改进,值得推荐。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/463467.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一篇文章理解时间复杂度和空间复杂度

今天也是很开心的学到了数据结构&#xff0c;也是打算把我自己对知识的理解给写出来了。第一篇数据结构开始咯。开始之前我们先理解一个概念。 什么是算法效率&#xff1f; 算法效率是指算法执行的速度或完成任务所需的资源&#xff08;如时间和空间&#xff09;的度量。它通…

单片机在物联网中的应用

单片机&#xff0c;这个小巧的电子设备&#xff0c;可能听起来有点技术性&#xff0c;但它实际上是物联网世界中的一个超级英雄。简单来说&#xff0c;单片机就像是各种智能设备的大脑&#xff0c;它能让设备“思考”和“行动”。由于其体积小、成本低、功耗低、易于编程等特点…

微信小程序开发学习笔记《16》uni-app框架

微信小程序开发学习笔记《16》uni-app框架 博主正在学习微信小程序开发&#xff0c;希望记录自己学习过程同时与广大网友共同学习讨论。建议仔细阅读uni-app对应官方文档 一、uni-app简介 **uni-app是一个使用Vue.js 开发所有前端应用的框架。**开发者编写一套代码&#xff…

Leecode之分割链表

一.题目及剖析 https://leetcode.cn/problems/partition-list-lcci/description/ 二.思路引入 就是将其分成大小两个链表,以x为分界线进行分堆,最后再将两链表合并 三.代码引入 /*** Definition for singly-linked list.* struct ListNode {* int val;* struct Lis…

【51单片机Keil+Proteus8.9】门锁控制电路

门锁控制电路 二、设计思路 电路设计 1.电源部分&#xff1a;使用BATTERY为整个电路提供电源&#xff0c;可以在电路中加入一个电 源开关&#xff0c;以便控制电源的开启和关闭。 2.处理器部分&#xff1a;使用AT89C51芯片作为主处理器&#xff0c;通过编写程序实现门锁的 …

2024牛客寒假算法基础集训营3

前言 感觉有些题是有难度&#xff0c;但是是我花时间想能想的出来的题目&#xff0c;总体来说做的很爽&#xff0c;题目也不错。个人总结了几个做题技巧&#xff0c;也算是提醒自己。 1.多分类讨论 2.从特殊到一般&#xff0c;便于找规律。例如有一组数&#xff0c;有奇数和…

客观看待前后端分离,优劣、场景、对程序员职业的影响

前后端分离倡导多年了&#xff0c;现在基本成为了开发的主流模式了&#xff0c;贝格前端工场承接的前端项目只要不考虑seo的&#xff0c;都采用前后端分离模式。 一、在前端开发中&#xff0c;前后端分离是指什么 在前端开发中&#xff0c;前后端分离是一种架构模式&#xff…

人工智能之大数定理和中心极限定理

大数定律 大数定律&#xff1a;是一种描述当试验次数很大时所呈现的概率性致的定律&#xff0c;由概率统计定义“频率收敛于概率”引申而来。换而言之&#xff0c;就是n个独立分布的随机变量其观察值的均值依概率收敛于这些随机变量所属分布的理论均值&#xff0c;也就是总体均…

4核8g服务器能支持多少人访问?- 腾讯云

腾讯云轻量4核8G12M轻量应用服务器支持多少人同时在线&#xff1f;通用型-4核8G-180G-2000G&#xff0c;2000GB月流量&#xff0c;系统盘为180GB SSD盘&#xff0c;12M公网带宽&#xff0c;下载速度峰值为1536KB/s&#xff0c;即1.5M/秒&#xff0c;假设网站内页平均大小为60KB…

C#,佩尔数(Pell Number)的算法与源代码

1 佩尔数&#xff08;Pell Number&#xff09; 佩尔数&#xff08;Pell Number&#xff09;是一个自古以来就知道的整数数列&#xff0c;由递推关系定义&#xff0c;与斐波那契数类似。佩尔数呈指数增长&#xff0c;增长速率与白银比的幂成正比。它出现在2的算术平方根的近似值…

NumPy:Python的强大数值计算库

NumPy&#xff1a;Python的强大数值计算库 NumPy&#xff08;Numerical Python&#xff09;是Python中最常用和最强大的数值计算库之一。它提供了高性能的多维数组对象和广泛的数学函数&#xff0c;使得在Python中进行科学计算和数据分析变得更加简单和高效。本文将介绍NumPy的…

Java编程构建高效二手交易平台

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…