交叉熵损失函数(Cross-Entropy Loss)的基本概念与程序代码

在这里插入图片描述

交叉熵损失函数(Cross-Entropy Loss)是机器学习和深度学习中常用的损失函数之一,用于分类问题。其基本概念如下:

1. 基本解释

交叉熵损失函数衡量了模型预测的概率分布与真实概率分布之间的差异。在分类问题中,通常有一个真实的类别标签,而模型会输出一个概率分布,表示样本属于各个类别的概率。交叉熵损失函数通过比较这两个分布来计算损失,从而指导模型的优化。

具体来说,对于二分类问题,真实标签通常表示为0或1,而模型输出一个介于0和1之间的概率值。交叉熵损失函数计算的是真实标签与模型预测概率之间的负对数似然。如果真实标签为1,则损失函数关注模型预测为正类的概率的对数值;如果真实标签为0,则损失函数关注模型预测为负类的概率的对数值。

对于多分类问题,真实标签通常使用one-hot编码表示,即只有一个位置为1,其余位置为0。模型输出一个概率向量,表示样本属于各个类别的概率。交叉熵损失函数计算的是真实标签中每个位置对应的模型预测概率的负对数似然之和。

2. Python程序代码

在Python中,可以使用NumPy库或深度学习框架(如TensorFlow、PyTorch)来计算交叉熵损失函数。以下是使用NumPy计算二分类和多分类交叉熵损失函数的示例代码:

import numpy as np# 二分类交叉熵损失函数
def binary_cross_entropy_loss(y_true, y_pred):return -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))# 多分类交叉熵损失函数
def categorical_cross_entropy_loss(y_true, y_pred):num_classes = y_true.shape[1]return -np.mean(np.sum(y_true * np.log(y_pred + 1e-9), axis=1))# 示例用法
# 二分类
y_true_binary = np.array([[0], [1], [1], [0]])
y_pred_binary = np.array([[0.1], [0.9], [0.8], [0.4]])
loss_binary = binary_cross_entropy_loss(y_true_binary, y_pred_binary)
print("Binary Cross-Entropy Loss:", loss_binary)# 多分类
y_true_categorical = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
y_pred_categorical = np.array([[0.7, 0.2, 0.1], [0.1, 0.8, 0.1], [0.2, 0.2, 0.6]])
loss_categorical = categorical_cross_entropy_loss(y_true_categorical, y_pred_categorical)
print("Categorical Cross-Entropy Loss:", loss_categorical)

请注意,上述代码示例仅用于演示目的,实际使用中可能会使用深度学习框架提供的交叉熵损失函数,因为它们通常更加优化和稳定。例如,在TensorFlow中,可以使用tf.keras.losses.BinaryCrossentropytf.keras.losses.CategoricalCrossentropy类来计算二分类和多分类交叉熵损失函数。在PyTorch中,可以使用torch.nn.BCELosstorch.nn.CrossEntropyLoss类来计算相应的损失函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/465746.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言每日一题(55)另一颗树的子树

力扣 572 另一棵树的子树 题目描述 给你两棵二叉树 root 和 subRoot 。检验 root 中是否包含和 subRoot 具有相同结构和节点值的子树。如果存在,返回 true ;否则,返回 false 。 二叉树 tree 的一棵子树包括 tree 的某个节点和这个节点的所…

Stable Diffusion 模型下载:majicMIX lux 麦橘辉耀 - V3

本文收录于《AI绘画从入门到精通》专栏,专栏总目录:点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八案例九案例十

分享89个时间日期JS特效,总有一款适合您

分享89个时间日期JS特效,总有一款适合您 89个时间日期JS特效下载链接:https://pan.baidu.com/s/127_keimOfy_AKrCNT4TQNA?pwd8888 提取码:8888 Python采集代码下载链接:采集代码.zip - 蓝奏云 学习知识费力气,…

「数据结构」哈希表1:基本概念

🎇个人主页:Ice_Sugar_7 🎇所属专栏:Java数据结构 🎇欢迎点赞收藏加关注哦! 基本概念 🍉哈希表🍉哈希冲突🍌负载因子调节🍌解决哈希冲突🥝1. 闭散…

Python 错误及其解决方法

Python 是一种易于学习的编程语言,但初学者在学习和使用 Python 的过程中难免会遇到一些错误。以下是一些常见的 Python 错误及其解决方法: 1. 语法错误(SyntaxError): python # 错误示例 print("Hello, World!…

sqli-labs-master靶场训练笔记(54-65|决战紫禁之巓)

2024.2.5 level-54 1、先判断类型和闭合类型 ?id1/0 #正常 证明不是数字型 ?id1 #错误 ?id1 -- a #正常 判断是 闭合 2、 判断列数 这里需要运气,但是根据前面50多关的经验直接猜测是3列 ?id-1 union select 1,2,3 -- a 3、爆表名&#xf…

[ai笔记1] 借着“ai春晚”开个场

1 文思ai笔记-新的开始 今天是2024年2月29日,也是传统农历的除夕夜。早起在ai圈看到一个比较新奇的消息,ai春晚今日举办,竟然有一点小小的激动。这些年确实好久没看过春晚了,自己对于春晚的映像还停留在“白云黑土”、“今天&…

《21天精通IPv4 to IPv6》第9天:云和容器中的IPv6——如何在云端☁️容器中实现IPv4到IPv6?

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通鸿蒙》 …

备份还原实际操作

备份还原实际操作 前言 根据达梦文档整理。 一、工具介绍 工具联机/脱机工具应用场景disql联机1️⃣数据库备份2️⃣归档备份3️⃣表空间备份与还原4️⃣表备份与还原dmrman脱机1️⃣数据库备份、还原和恢复2️⃣脱机还原表空间3️⃣归档的备份、还原和修复manager联机对应…

联想DP510、DP520、DP515打印机恢复出厂和自定义纸张方法

联想DP510、DP520、DP515恢复出厂设置方法 一、按下打印方式键,同时开机,直至打印头动作停止时松手; 二、水平装入 A4 纸,打印机自动调入并开始打印,若打印机将纸退出,将纸放平重新装入; 三、…

Idea Git Review插件

idea git plugin 添加了一些常用的小插件 可以右键打开git bash窗口 可以右键选中文字点击baidu fanyi 可以通过搜索git用户名 指定开始时间查询某个版本自己提交的所有代码文件 可以通过点击蓝色行数,跳转到指定的改动代码块 资源地址: git-pl…

Elasticsearch:混合搜索是 GenAI 应用的未来

在这个竞争激烈的人工智能时代,自动化和数据为王。 从庞大的存储库中有效地自动化搜索和检索信息的过程的能力变得至关重要。 随着技术的进步,信息检索方法也在不断进步,从而导致了各种搜索机制的发展。 随着生成式人工智能模型成为吸引力的中…