可变参数(c/c++)

        

目录

一、C语言版本

 二、C++的实现方法

2.1数据包

2.2sizeof...运算符

2.3可变参数模板的使用

2.4emplace_back()


        有时候我们在编写函数时,可能不知道要传入的参数个数,类型 。比如我们要实现一个叠加函数,再比如c语言中的printf,c++中的emplace_last()。

那么这些函数是如何实现的呢?

一、C语言版本

在 C 中,可变参数通过 <stdarg.h> 头文件中的宏来处理。最常用的宏是 va_list、va_start、va_arg 和 va_end。以下是这些宏的简要说明:

va_list:用于声明一个可变参数列表的类型。

其实va_list就是一个char*类型,但具体实现取决于编译器和平台。它的内部结构是由编译器实现的,对于程序员来说是不透明的。

 va_start:用于初始化一个可变参数列表,将其与函数参数列表中的最后一个固定参数关联。(因为形参是从右往左入参的,也就是右边的参数是高地址,左边的函数是低地址)

va_arg:用于从可变参数列表中读取一个参数,并指定其类型。

va_end:用于清理可变参数列表,结束可变参数的使用 

 下面我们将结合一段代码来简单的讲解

#include<iostream>
#include<stdarg.h>
int  addsum(int num, ...)
{va_list args;va_start(args, num);int ret=0;for (int i = 0; i < num; i++){int temp = va_arg(args, int);ret+=temp;}va_end(args);return ret;
}int main()
{std::cout<<addsum(5, 1, 2, 3, 4, 5);return 0;
}

在 C 语言中,如果你使用了 va_start 宏来初始化可变参数列表,那么你至少需要传递一个参数作为固定参数,以便确定可变参数列表的起始位置。这个固定参数通常被称为 "sentinel" 或 "sentinel value"。

那么这个"sentinel" 或 "sentinel value"。一定要是参数个数吗?

当然不是,从printf中我们就知道第一个参数也可以是字符串。

在实现可变参数函数时,并不一定需要传递一个表示参数个数的额外参数。额外的参数可以帮助函数确定参数的数量,但并不是必须的。实际上,很多情况下都可以通过其他方式来确定参数的数量。

以下是一些确定参数数量的方法:

  1. 约定特定的参数结尾标志:例如,C 标准库中的 printf 函数就是通过字符串中的格式化标志(例如 %d%s 等)来确定参数的数量的。

  2. 利用特定的参数类型:例如,如果所有的参数都是相同类型的,你可以在函数中使用特定的参数类型来确定参数的数量。

  3. 使用额外参数传递参数数量:虽然不是必须的,但在某些情况下,通过额外的参数传递参数的数量是一种方便的做法。

在实际应用中,选择哪种方法取决于函数的使用场景和需求。如果函数的参数数量不固定,并且无法通过其他方式确定参数的数量,那么传递一个表示参数数量的额外参数是一种常见的做法。但在某些情况下,其他方法可能更加合适。

总的来说,并不是一定要传递表示参数个数的额外参数,具体是否需要取决于函数的设计和实现需求。

而va_start其实就是将自己定义的va_list 类型的参数向后移动一个位置

在上面的代码中其实就是让args指向如图所示位置。

而va_arg就是将后面的参数从其相应的类型提取出来。这下,你就知道为什么printf中为什么要有传入%d%f这些东西了吧。(当然这些东西也有确定参数个数的作用)。

最后只剩下va_end,用于标记可变参数列表的结束。它的存在是为了确保在使用完可变参数列表后正确释放资源,以避免内存泄漏和其他潜在的问题。

在可变参数函数中,通常会使用 va_start 来初始化 va_list 对象,然后使用 va_arg 来逐个读取参数,直到参数列表的末尾。一旦处理完所有参数,就应该调用 va_end 来清理 va_list 对象,以释放相关资源。

va_end 的作用包括:

  1. 清理资源va_list 对象可能会占用一些资源,例如在某些实现中可能分配了内存。调用 va_end 可以释放这些资源,避免内存泄漏。

  2. 标记列表的结束:调用 va_end 可以显式地标记可变参数列表的结束,使得程序能够正确地识别参数列表的边界,避免访问超出列表范围的参数。

  3. 与平台相关的清理工作va_end 可能会执行与平台相关的清理工作,以确保系统资源得到正确的释放。

在使用可变参数函数时,特别是在处理可变参数列表的末尾时,始终记得调用 va_end 是很重要的。不调用 va_end 可能会导致资源泄漏和未定义的行为,因此要确保在使用完可变参数列表后及时调用 va_end

 二、C++的实现方法

2.1数据包

在 C++ 中,也可以使用可变参数模板来实现类似的功能,这种技术更加灵活,并且不需要使用宏。C++11 引入了新的语法和标准库支持,使得可变参数模板更加易用和安全。

c++在c++11中提出了可变参数模板的概念,所谓可变参数模板就是一个接受可变数目参数模板的函数或模板类。可变数目的参数被称作参数包。存在两种参数包:

1.模板参数包:表示0或多个模板参数

2.函数参数包:表示0或多个函数参数

我们使用“...”来表示一个包,在一个模板参数列表中,class..或typname...表示接下来 的参数表示零个或多个类型的列表;一个类型名后面跟一个省略号表示零个或多个给定类型的非类型参数的列表。在函数参数列表中,如果一个参数的类型是一个模板参数包,则此参数也是一个函数参数包。例如:

//Args是一个模板参数包;rest是一个函数参数包
//Args表示零个或多个模板类型参数//rest表示零个或多个函数参数
template <typename T,typename...Args>
void foo(const T 6t,const Args6 ..  rest);

声明了foo是一个可变参数函数模板,它有一个名为T的类型参数,和一个名为Args的模板参数包。这个包表示零个或多个额外的类型参数。foo的函数参数列表包含一个const s类型的参数,指向T的类型,还包含一个名为rest的函数参数包,此包表示零个或多个函数参数。

与往常一样,编译器从函数的实参推断模板参数类型。对于一个可变参数模板,编译器还会推断包中参数的数目。例如,给定下面的调用

int i= 0;
double d=3.14;
string s="how now brown cow";
foo(i,s,42,d); //包中有三个参数
fog(s.42,"hi");//包中有两个参数
foo(d,s);      //包中有一个参数
foo("hi");      //空包

编译器会为foo实例化出四个不同的版本:

void foo(const int&,const string&,const int&,const double&);
void foo(const string&,const int&,const char[3]&);
void foo(const double&,const string&);
void foo(const char[3]&);

在每个实例中,T的类型都是从第一个实参的类型推断出来的。剩下的实参(如果有的话)提供函数额外实参的数目和类型。

2.2sizeof...运算符

当我们需要知道包中有多少元素时,可以使用sizeof...运算符。类似sizeof返回一个常量表达式

template<typename ...Args>
void g(Args .args)
{cout <<sizeof...(Args)<<end1;//类型参数的数目cout <<sizeof...(args)<<endl;//函数参数的数目
}

2.3可变参数模板的使用

void _ShowList()
{// 结束条件的函数std::cout << std::endl;
}template <class T, class... Args>
void _ShowList(T val, Args... args)
{std::cout << val << " ";_ShowList(args...);
}// args代表0-N的参数包
template <class... Args>
void CppPrint(Args... args)
{_ShowList(args...);
}
int main()
{CppPrint(1, 2, 2.2, string("xxxx"));
}

一般来说我们是使用递归的方式来将参数全部使用,当函数全部使用后就会匹配到结束函数。

template <class T>
void PrintArg(T t)
{std::cout << t << " ";
}
// args表示0-N的参数包
template <class... Args>
void CppPrintf(Args... args)
{int a[] = {0, (PrintArg(args), 0)...};cout << endl;
}

c++在编译时要确定数组a的大小来给空间,所以他会将里面的那个数据包展开,如图()中是一个逗号表达式,也就是有几个参数就会调用几下PrintArg。

2.4emplace_back()

emplace_back 是 C++ 中标准库容器 std::vector 的一个成员函数,用于在容器的尾部直接构造一个新元素,而不是先创建一个临时对象再拷贝或移动到容器中.

使用 emplace_back 可以直接在容器的尾部构造一个新元素,而不需要手动创建该元素的实例。emplace_back 接受任意数量的参数,这些参数会被传递给元素类型的构造函数,用于直接在容器中构造新元素。

所以网上有人说emplace_back代价更小,但是事实上移动拷贝代价更小,所以这句话应该有前提就是当元素类型是不可拷贝的时候。

在元素类型允许移动构造或移动赋值的情况下,emplace_backpush_back 的性能差异可能会减小甚至消失。

emplace_backpush_back 的主要性能差异在于:

  1. emplace_back 在容器中直接构造元素,避免了创建临时对象和拷贝/移动操作。
  2. push_back 在容器中插入一个已经构造的元素的拷贝或移动。

但是,如果元素类型具有移动语义(即具有移动构造函数和/或移动赋值运算符),那么在 push_back 中插入一个临时构造的元素,并在插入过程中执行移动操作,性能损失会相对较小。

因此,在元素类型允许移动拷贝时,emplace_backpush_back 的性能差异可能会减小,甚至没有明显的性能差异。在这种情况下,可以选择更符合语义的操作或更易读的代码。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/470542.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言每日一练——链表篇(九)

传送门 牛客面试笔试必刷101题 ----------------链表相加(二) 题目以及解析 题目 解题代码及解析 解析 这一道题主要是要对链表相加的过程进行模拟&#xff0c;虽然思路不难但是细节出比较多&#xff0c;这里博主的思路主要是先将两个链表反转过来然后以Head1为基础来模拟…

C语言:指针的基础详解

目录 1. 内存 2. 取地址& 3. 指针变量 4. 解引用 4.1 *解引用 4.2 []解引用 4.3 ->解引用 5. 指针变量的大小 5.1 结论 6. 指针运算 7. void* 指针 8. const修饰指针 8.1 const修饰变量 8.2 const修饰指针变量 8.3 结论 9. 野指针 9.1 为什么会出现野指…

[嵌入式系统-15]:RT-Thread -1- 简介与技术架构

目录 一、RT-Thread简介 1.1 简介 1.2 功能特点 1.3 发展历史 1.4 应用场合 1.5 与Linux的比较 1.6 ​​​​​​​RT-Thread优缺点 二、技术架构 2.1 分层架构​编辑 2.2 功能组件 2.3 应用程序接口RT-Thread API 2.4 应用程序接口&#xff1a;RT-Thread API、POS…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Navigation组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Navigation组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Navigation组件 鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#…

Java图形化界面编程——AWT概论 笔记

2.3 Container容器 2.3.1 Container继承体系 Winow是可以独立存在的顶级窗口,默认使用BorderLayout管理其内部组件布局;Panel可以容纳其他组件&#xff0c;但不能独立存在&#xff0c;它必须内嵌其他容器中使用&#xff0c;默认使用FlowLayout管理其内部组件布局&#xff1b;S…

分布式文件系统 SpringBoot+FastDFS+Vue.js【二】

分布式文件系统 SpringBootFastDFSVue.js【二】 六、实现上传功能并展示数据6.1.创建数据库6.2.创建spring boot项目fastDFS-java6.3.引入依赖6.3.fastdfs-client配置文件6.4.跨域配置GlobalCrosConfig.java6.5.创建模型--实体类6.5.1.FastDfsFile.java6.5.2.FastDfsFileType.j…

leetcode:343.整数拆分

解题思路&#xff1a; 拆分的越多越好&#xff08;暂且认为&#xff09;&#xff0c;尽可能拆成m个近似相等的数&#xff0c;会使得乘积最大 dp含义&#xff1a;将i进行拆分得到最大的积为dp[i] 递推公式&#xff1a;j x dp[i-j](固定j&#xff0c;只通过凑dp[i-j]进而实现所…

Java学习第十四节之冒泡排序

冒泡排序 package array;import java.util.Arrays;//冒泡排序 //1.比较数组中&#xff0c;两个相邻的元素&#xff0c;如果第一个数比第二个数大&#xff0c;我们就交换他们的位置 //2.每一次比较&#xff0c;都会产生出一个最大&#xff0c;或者最小的数字 //3.下一轮则可以少…

寒假 6

1.现有无序序列数组为{23,24,12,5,33,5,34,7}&#xff0c;请使用以下排序实现编程。 函数1:请使用冒泡排序实现升序排序 函数2︰请使用简单选择排序实现升序排序 函数3:请使用直接插入排序实现升序排序 函数4∶请使用插入排序实现升序排序 #include <stdio.h> #inclu…

找负环(图论基础)

文章目录 负环spfa找负环方法一方法二实际效果 负环 环内路径上的权值和为负。 spfa找负环 两种基本的方法 统计每一个点的入队次数&#xff0c;如果一个点入队了n次&#xff0c;则说明存在负环统计当前每个点中的最短路中所包含的边数&#xff0c;如果当前某个点的最短路所…

Visual Studio Code连接远程MS Azure服务器的方法

1. 开启远程MS Azure服务器 Step 1.1. 登录MS Azure账号&#xff0c;https://azure.microsoft.com/en-us/get-started/azure-portal Step 1.2. 开启远程MS Azure服务器 2. 通过Visual Studio Code连接MS Azure远程服务器 Step 2.1. 安装Remote-SSH Extension Step 2.2. 选择…

使用REQUESTDISPATCHER对象调用错误页面

使用REQUESTDISPATCHER对象调用错误页面 问题陈述 InfoSuper公司已经创建了一个动态网站。发生错误时,浏览器中显示的堆栈跟踪很难理解。公司的系统分析师David Wong让公司的软件程序员Don Allen创建自定义错误页面。servlet引发异常时,应使用RequestDisapatcher对象向自定义…