卷积神经网络的基本结构

卷积神经网络的基本结构

与传统的全连接神经网络一样,卷积神经网络依然是一个层级网络,只不过层的功能和形式发生了变化。

典型的CNN结构包括:

  1. 数据输入层(Input Layer)
  2. 卷积层(Convolutional Layer)
  3. 激活层(Activation Layer)
  4. 池化层(Pooling Layer)
  5. 全连接层(Full Connection Layer)
  6. 损失层(Loss Function Layer)
  7. 精度层(Accuracy Layer)

1.数据输入层

数据输入层不属于网络结构。与传统的全连接神经网络不同,卷积神经网络的输入层是原始图像,而非提取的信息,因此卷积神经网络是一个无监督的特征学习网络

数据输入层主要对原始图像数据进行预处理,基础操作包括取均值灰度归一化,还有一些数据增强的相关操作。

# 这是一个典型的使用protobuf协议进行配置的网络输入层,它是Caffe的深度学习模型的配置文件
layer{name: "data"type: "ImageData"# 输入层的类型是ImageData,也就是原生的图像格式top: "data"top: "clc-label"# 该层有两个参数:image_data_param 和 transform_param # 参数有一些属性,都是图像预处理参数image_data_param { # 这个参数有三个属性source: "all_shuffle_train.txt" # 表示输入训练文件路径batch size: 96 # 表示训练时输入数据的批处理大小shuffle: true # 表示是否采用随机操作}transform_param {mean_value: 104.008 # mean_value表示GRB的均值mean_value: 116.669 mean_value: 122.675crop_size: 48 # 表示输入训练图像尺寸mirror: true # 是数据增强操作,指代水平翻转}include: { phase: TRAIN}
}

2.卷积层

卷积层是网络的特征提取层。卷积神经网络一般包含多个卷积层,一个卷积层可以有多个不同的卷积核。

# 这是一个典型的卷积网络层。
# 包含两类参数,即权重参数和偏置参数,其中配置了两个param属性,分别表示这两类参数的学习率
layer{name: "conv1"type: "Convolution"bottom: "data"top: "conv1"param {lr_mult:1decay_mult:1}param {lr_mult:2decay_mult: 0}convolution_param {num_output:12 # 输出特征层的通道数目pad:1 # 在卷积前进行边界填充像素的行列数kernel_size:3 # 卷积步长stride:2weight_filler{ # 卷积权重参数的初始化策略type:"xavier"std:0.01}bias_filler { # 这里配置的是偏置参数的初始化方法type: "constant"value:0.2}}
}

3.激活层

网络需要激活层进行特征的选择和抑制,早期的Sigmoid等函数使用较多,现在多实用形式更加简单的ReLU函数。

# 这是一个激活层
# RELU激活层非常简单,没有需要学习的参数。(有的激活层有需要学习的参数)
layer{name: "relu1"type:"ReLU"bottom: "conv1"top: "conv1"
}

4.池化层

池化层用于降低特征平面的分辨率及抽象特征

池化用于压缩网络参数和数据,以降低过拟合。

如果输入为一幅图像,那么池化层最主要的作用就是在压缩图像的同时保持该图像特征的不变性

# 这是一个池化层
# 池化层包含一个参数pooling_param
layer {name: "pool"type: "Pooling"bottom: "conv3"top: "pool"pooling_param { # 这个参数中有三个属性pool: MAX # 最大池化kernel_size: 3 # 池化操作的核的大小stride: 2 # 步长}
}

5.全连接层

全连接层通常在卷积神经网络结构的最后,它也有权重和偏置两个参数。

# 这是一个全连接层,通常在卷积神经网络结构的最后,也有权重和偏置两个参数
# 其中配置了两个param属性,分别表示这两类参数的学习率
layer {name: "fc"type: "InnerProduct"bottom: "pool"top: "fc"param {lr_mult: 1decay_mult: 1}param {lr_mult: 2decay_mult: 1}inner_product_param {num_output: 2 # 输出特征维度,通常是分类任务的类别数目weight_filler{ # 权重参数的初始化方式type: "xavier"}bias_filler{ # 偏置参数的初始化方式type: "constant"value: 0}}
}

6.损失层

卷积神经网络的优化原理同一般的机器学习算法类似,需要定义损失目标函数,找到最小化损失函数的参数值,通常利用SGD(随机梯度下降)等算法来调整权值

# 这是一个softmax损失层,损失层的输入就是网络的输出和真实的标签
layer {name: "loss"type: "SoftmaxWithLoss"bottom: "fc"bottom: "clc-label"top: "loss"
}

7.精度层

损失目标函数可以反映网络性能的优劣,但不是最终需要的指标。

对于分类任务,最终需要的是分类精度;

对于回归任务,需要的是定位精度。

因此,一个卷积神经网络还需要接上网络精度层

# 这是一个分类任务的精度层,它与损失层一样,输入是网络的输出和真实的标签
layer {bottom: "fc"bottom: "clc-label"top: "acc"name: "acc"type: "Accuracy"
}

上面定义的完整的网络结构如图1.20所示。

参考文献:

1.书名:《深度学习之图像识别 核心算法与实战案例 (全彩版)》

作者:言有三著

出版社:清华大学出版社

出版时间:2023年7月第一版(第一次印刷)

ISBN:978-7-302-63527-7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/471478.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(02)Hive SQL编译成MapReduce任务的过程

目录 一、架构及组件介绍 1.1 Hive底层架构 1.2 Hive组件 1.3 Hive与Hadoop交互过程 二、Hive SQL 编译成MR任务的流程 2.1 HQL转换为MR源码整体流程介绍 2.2 程序入口—CliDriver 2.3 HQL编译成MR任务的详细过程—Driver 2.3.1 将HQL语句转换成AST抽象语法树 词法、语…

关于保存int型变量进int型数组的做法

如何保存int型变量进int型数组呢&#xff0c;大家先来看看我写的这串代码&#xff1a; #include <bits/stdc.h>using namespace std; int main(){int n;cin >> n;int num;vector<int>a;for (int i 1;i<n;i){cin >> num;if(num % 2 ! 0){a.push_ba…

neo4j下载安装最新教程 2024.02

文章目录 neo4j简介neo4j与jdk版本对应neo4j历史版本 下载地址配置环境变量命令行启动验证安装结果 neo4j简介 Neo4j 是一个高性能的 NoSQL 图形数据库&#xff0c;它将结构化数据存储在网络&#xff08;从数学角度叫做图&#xff09;上而不是表中。Neo4j 也可以被看作是一个高…

在线黑色响应式全屏滚动主页html源码

html5黑色大气的个人博客全屏滚动个人主页源码 右键记事本即可修改 直接上传服务器空间就可使用

2月12号

第一种判断方式 if (n 10) 更好&#xff0c;因为它具有更好的可读性、可以避免误操作&#xff0c;并符合常见的编程习惯和约定

OpenAI 文生视频大模型Sora,看完别说WC啊

OpenAI&#xff0c;发布了他们的文生视频大模型Sora&#xff08;Sora 是一个 AI 模型&#xff0c;可以根据文本指令创建现实且富有想象力的场景&#xff09; 来感受下震撼视觉冲击&#xff0c;看看你有没有说WC… 地址&#xff1a;sora 提示&#xff1a;一位时尚女性走在充满…

小米米家智能摄像头mp4多碎片手工恢复案例

小米米家智能摄像头mp4多碎片手工恢复案例 智能摄像头品牌中小米算是绝对的大厂&#xff0c;其采用的方案也是比较成熟比较典型的&#xff1a;日志截图1分钟1个文件。小米米家的智能摄像头之前处理过很多&#xff0c;这次来讲一个比较特殊的案例。 故障存储: 32G TF卡 fat…

Java中的String类的常用方法(对于字符串的常用操作)

目录 一、获取指定索引的字符 二、 获取指定字符或者字符串的索引位置 三、判断字符串是否以指定内容开头或结尾 四、替换指定的字符或者是字符串 五、获取字符串的子串 六、将字符串转换为字符数组 七、比较字符串的内容是否相等 八、连接字符串 九、比较两个字符串的大…

【AIGC】Stable Diffusion的ControlNet参数入门

Stable Diffusion 中的 ControlNet 是一种用于控制图像生成过程的技术&#xff0c;它可以指导模型生成特定风格、内容或属性的图像。下面是关于 ControlNet 的界面参数的详细解释&#xff1a; 低显存模式 是一种在深度学习任务中用于处理显存受限设备的技术。在这种模式下&am…

(2024|ICLR,SVD,软加权正则化,推理时文本嵌入优化)文本到图像扩散模型的图像内容抑制

Get What You Want, Not What You Dont- Image Content Suppression for Text-to-Image Diffusion Models 公和众和号&#xff1a;EDPJ&#xff08;进 Q 交流群&#xff1a;922230617 或加 VX&#xff1a;CV_EDPJ 进 V 交流群&#xff09; 目录 0. 摘要 2. 相关工作 3. 方…

【C++】---类和对象(中)默认成员函数 和 操作符重载

前言&#xff1a; 假如一个类中既没有成员变量也没有成员函数&#xff0c;那么这个类就是空类&#xff0c;空类并不是什么都没有&#xff0c;因为所有类都会生成如下6个默认成员函数&#xff1a; 一、构造函数 1、构造函数的定义及其特性 对于日期类对象&#xff0c;我们可…

VBA技术资料MF119:数据验证的添加与删除

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套&#xff0c;分为初级、中级、高级三大部分&#xff0c;教程是对VBA的系统讲解&#…