【机器学习笔记】13 降维

降维概述

维数灾难

维数灾难(Curse of Dimensionality):通常是指在涉及到向量的计算的问题中,随着维数的增加,计算量呈指数倍增长的一种现象。在很多机器学习问题中,训练集中的每条数据经常伴随着上千、甚至上万个特征。要处理这所有的特征的话,不仅会让训练非常缓慢,还会极大增加搜寻良好解决方案的困难。这个问题就是我们常说的维数灾难。
在这里插入图片描述
维数灾难涉及数字分析、抽样、组合、机器学习、数据挖掘和数据库等诸多领域。在机器学习的建模过程中,通常指的是随着特征数量的增多,计算量会变得很大,如特征达到上亿维的话,在进行计算的时候是算不出来的。有的时候,维度太大也会导致机器学习性能的下降,并不是特征维度越大越好,模型的性能会随着特征的增加先上升后下降。

降维

降维(Dimensionality Reduction)是将训练数据中的样本(实例)从高维空间转换到低维空间,该过程与信息论中有损压缩概念密切相关。同时要明白的,不存在完全无损的降维。有很多种算法可以完成对原始数据的降维,在这些方法中,降维是通过对原始数据的线性变换实现的。

  • 为什么要降维
    高维数据增加了运算的难度
    高维使得学习算法的泛化能力变弱(例如,在最近邻分类器中,样本复杂度随着维度成指数增长),维度越高,算法的搜索难度和成本就越大。
    降维能够增加数据的可读性,利于发掘数据的有意义的结构
  • 降维的作用
    1.减少冗余特征,降低数据维度
    假设我们有两个特征:
    𝑥1:长度用厘米表示的身高;𝑥2:是用英寸表示的身高。
    这两个分开的特征𝑥1和𝑥2,实际上表示的内容相同,这样其实可以减少数据到一维,只有一个特征表示身高就够了。
    很多特征具有线性关系,具有线性关系的特征很多都是冗余的特征,去掉冗余特征对机器学习的计算结果不会有影响。
    2.数据可视化
    t-distributed Stochastic Neighbor Embedding(t-SNE)
    t-SNE(TSNE)将数据点之间的相似度转换为概率。原始空间中的相似度由高斯联合概率表示,嵌入空间的相似度由“学生t分布”表示。虽然Isomap,LLE和variants等数据降维和可视化方法,更适合展开单个连续的低维的manifold。但如果要准确的可视化样本间的相似度关系,如对于下图所示的S曲线(不同颜色的图像表示不同类别的数据),t-SNE表现更好。因为t-SNE主要是关注数据的局部结构

降维的优缺点

  • 降维的优点:
    • 通过减少特征的维数,数据集存储所需的空间也相应减少,减少了特征维数所需的计算训练时间;
    • 数据集特征的降维有助于快速可视化数据;
    • 通过处理多重共线性消除冗余特征。
  • 降维的缺点:
    • 由于降维可能会丢失一些数据;
    • 在主成分分析(PCA)降维技术中,有时需要考虑多少主成分是难以确定的,往往使用经验法则
    在这里插入图片描述

SVD(奇异值分解)

**奇异值分解 (Singular Value Decomposition,以下简称 SVD)**是在机器学习领域广泛应用的算法,它不光可以用于降维算法中的特征分解,还可以用于推荐系统,以及自然语言处理等领域。是很多机器学习算法的基石。

  • SVD可以将一个矩阵 𝐴分解为三个矩阵的乘积:
    一个正交矩阵 𝑈(orthogonal matrix),
    一个对角矩阵𝛴 (diagonal matrix),
    一个正交矩阵𝑉的转置。

假设矩阵 𝐴 是一个 𝑚 × 𝑛 的矩阵,通过SVD是对矩阵进行分解,那么我们定义矩阵 𝐴 的 SVD 为:在这里插入图片描述

  • 符号定义
    𝐴 = 𝑈𝛴𝑉T = 𝑢1𝜎1𝑣1T + ⋯ + 𝑢𝑟𝜎𝑟𝑣𝑟T
    其中𝑈是一个𝑚 × 𝑚的矩阵,每个特征向量𝑢𝑖叫做𝐴 的左奇异向量。
    𝛴是一个𝑚 × 𝑛的矩阵,除了主对角线上的元素以外全为 0,主对角线上的每个元素都称为奇异值 𝜎。
    𝑉是一个𝑛 × 𝑛的矩阵,每个特征向量𝑣𝑖叫做 𝐴 的右奇异向量。
    𝑈 和 𝑉都是酉矩阵,即满足:𝑈T𝑈 = 𝐼, 𝑉T𝑉 = 𝐼。
    𝑟为矩阵𝐴的秩(rank)。

  • SVD求解 𝑈矩阵求解
    方阵𝐴𝐴T为𝑚 × 𝑚的一个方阵,那么我们就可以进行特征分解,得到的特
    征值和特征向量满足下式:
    在这里插入图片描述
    可以得到矩阵𝐴𝐴T的 𝑚 个特征值和对应的 𝑚个特征向量𝑢了。
    将𝐴𝐴T的所有特征向量组成一个 𝑚 × 𝑚的矩阵𝑈,就是我们 𝑆𝑉𝐷 公式里面的𝑈 矩阵了。
    一般我们将𝑈中的每个特征向量叫做𝐴 的左奇异向量
    注意:𝐴𝐴T = (𝑈𝛴VT)(𝑈𝛴VT)T = 𝑈(𝛴𝛴T)UT
    上式证明使用了𝑉T𝑉 = 𝐼, 𝛴T = 𝛴。可以看出的𝐴𝐴T特征向量组成的矩阵就是我们 SVD 中的 𝑈矩阵。

  • 𝑉矩阵求解
    如果我们将 𝐴 的转置和 𝐴 做矩阵乘法,那么会得到𝑛 × 𝑛 的一个方阵𝐴T𝐴。既然𝐴T𝐴是方阵,那么我们就可以进行特征分解,得到的特征值和特征向量满足下式:
    在这里插入图片描述
    这样我们就可以得到矩阵𝐴T𝐴的 𝑛个特征值和对应的𝑛个特征向量𝑣了。
    将𝐴T𝐴的所有特征向量组成一个 𝑛 × 𝑛 的矩阵𝑉,就是我们 SVD 公式里面的 𝑉 矩阵了。一般我们将 𝑉中的每个特征向量叫做 𝐴 的右奇异向量。
    注意:𝐴𝐴T = (𝑈𝛴VT)T (𝑈𝛴VT)=V(𝛴T𝛴)VT
    上式证明使用了UTU = 𝐼, 𝛴T = 𝛴。可以看出的𝐴𝐴T特征向量组成的矩阵就是我们 SVD 中的 V矩阵。
    在这里插入图片描述
    在这里插入图片描述

SVD计算案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
SVD分解可以将一个矩阵进行分解,对角矩阵对角线上的特征值递减存放,而且奇异值的减少特别的快,在很多情况下,前 10%甚至 1%的奇异值的和就占了全部的奇异值之和的 99%以上的比例。
也就是说,对于奇异值,它跟我们特征分解中的特征值类似,我们也可以用最大的 𝑘 个的奇异值和对应的左右奇异向量来近似描述矩阵。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

PCA(主成分分析)

主成分分析(Principal Component Analysis,PCA)是一种降维方法,通过将一个大的特征集转换成一个较小的特征集,这个特征集仍然包含了原始数据中的大部分信息,从而降低了原始数据的维数。
减少一个数据集的特征数量自然是以牺牲准确性为代价的,但降维的诀窍是用一点准确性换取简单性。因为更小的数据集更容易探索和可视化,并且对于机器学习算法来说,分析数据会更快、更容易,而不需要处理额外的特征。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 如何得到这些包含最大差异性的主成分方向呢?
    通过计算数据矩阵的协方差矩阵
    然后得到协方差矩阵的特征值特征向量
    选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。
    这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。

PCA的算法两种实现方法

(1) 基于SVD分解协方差矩阵实现PCA算法

PCA 减少𝑛维到𝑘维:
设有𝑚条𝑛维数据,将原始数据按列组成𝑛行𝑚列矩阵𝑋
第一步是均值归一化。我们需要计算出所有特征的均值,然后令 𝑥𝑗 = 𝑥𝑗 − 𝜇𝑗。(𝜇𝑗为均值)。如果特征是在不同的数量级上,我们还需要将其除以标准差 𝜎2
第二步是计算协方差矩阵(covariance matrix)𝛴:
在这里插入图片描述

第三步是计算协方差矩阵𝛴的特征向量(eigenvectors),可以利用奇异值分解(SVD)来求解。
在这里插入图片描述

(2) 基于特征值分解协方差矩阵实现PCA算法

  • 背景知识
    (1) 特征值与特征向量
    如果一个向量𝑣是矩阵𝐴的特征向量,将一定可以表示成下面的形式:𝐴𝑣 = 𝜆𝑣
    其中,𝜆是特征向量𝐴对应的特征值,一个矩阵的一组特征向量是一组正交向量。
    (2)特征值分解矩阵
    对于矩阵𝐴 ,有一组特征向量𝑣 ,将这组向量进行正交化单位化,就能得到一组正交单位向量。特征值分解,就是将矩阵𝐴分解为如下式:𝐴 = 𝑃𝛴𝑃−1
    其中,𝑃是矩阵𝐴的特征向量组成的矩阵, 𝛴则是一个对角阵,对角线上的元素就是特征值。
    备注:对于正交矩阵𝑃,有𝑃−1= 𝑃T

在这里插入图片描述

PCA的算法案例

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

PCA算法优缺点

  • PCA算法优点
    1.仅仅需要以方差衡量信息量,不受数据集以外的因素影响
    2.各主成分之间正交,可消除原始数据成分间的相互影响的因素
    3.计算方法简单,主要运算时特征值分解,易于实现
    4.它是无监督学习,完全无参数限制的
  • PCA算法缺点
    1.主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强
    2.方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/478146.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SpringMVC 的参数绑定之list集合、Map

标签中name属性的值就是pojo类的属性名 参数绑定4 list [对象] <form action"teaupd.do" method"post"> <c:forEach items"${list}" var"tea" varStatus "status"> 教师编号&#xff1a;<input…

微信小程序开发:appid和secret的获取方法

首先进入小程序官网 - 微信公众平台&#xff1a;https://mp.weixin.qq.com 在开发管理页即可查看 AppID。 AppSecret 需要点击生成&#xff0c;手机扫码后查看。 内容拓展&#xff1a; 当开发微信小程序时&#xff0c;了解和正确使用 AppID 和 AppSecret 是至关重要的。以…

更快找到远程/自由工作的网站

不要使用Fiver或Upwork。 它们已经饱和了。 下面是10个更快找到远程/自由工作的网站&#xff1a; 1. Toptal 这个网站专门为熟练的自由职业者提供远程工作机会&#xff0c;如Shopify和Priceline等一流公司。 他们只接受软件开发、设计和金融等领域的顶级3%自由职业者。 htt…

PyCharm 调试过程中控制台 (Console) 窗口内运行命令 - 实时获取中间状态

PyCharm 调试过程中控制台 [Console] 窗口内运行命令 - 实时获取中间状态 1. yongqiang.py2. Debugger -> Console3. Show Python PromptReferences 1. yongqiang.py #!/usr/bin/env python # -*- coding: utf-8 -*- # yongqiang chengfrom __future__ import absolute_imp…

计算机设计大赛 深度学习人体语义分割在弹幕防遮挡上的实现 - python

文章目录 1 前言1 课题背景2 技术原理和方法2.1基本原理2.2 技术选型和方法 3 实例分割4 实现效果5 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 深度学习人体语义分割在弹幕防遮挡上的应用 该项目较为新颖&#xff0c;适合作为竞…

【软考问题】-- 10 - 知识精讲 - 项目风险管理

一、基本问题 1&#xff1a;按照可预测性&#xff0c;风险分哪三类&#xff1f; &#xff08;1&#xff09;已知风险&#xff1a;如项目目标不明确&#xff0c; 过分乐观的进度计划&#xff0c; 设计或施工变更和材料价格波动等。&#xff08;2&#xff09;可预测风险&#xff…

代码随想录算法训练营第三十六天|435. 无重叠区间 763.划分字母区间 56. 合并区间

435. 无重叠区间 链接&#xff1a;力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 细节&#xff1a; 1. 这道题目和 452.用最少数量的箭引爆气球 &#xff0c;452中的弓箭数量其实就是 无重叠区间的数量&#xff0c;用总的区间数减去 无重叠区间的数…

物骐平台双模蓝牙音频SOC按键功能验证方法

是否需要申请加入数字音频系统研究开发交流答疑群(课题组)&#xff1f;可加我微信hezkz17, 本群提供音频技术答疑服务&#xff0c;群赠送蓝牙音频&#xff0c;DSP音频项目核心开发资料, 概述 WQ7034AX 是一颗高规格蓝牙音频 SoC 芯片&#xff0c; 支持 BT/BLE 5.3 双模协议栈…

Java实现一个栈

目录 概念与结构 实现一个栈 创建一个栈类 实现栈的基本操作 测试栈类 概念与结构 概念与结构 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0c;另一端称为栈底。栈中的数据元…

HashCat报错

HashCat执行命令 hashcat -a 3 -m 17225 -2 ?l?u $pkzip2$3*1*1*0*0*24*143c*4917*4bfe891c40b54ed8a613dc05c1a5a5c6df68da07f2a00e55d705a5bc04f3c149a53ab891*1*0*8*24*2e57*490e*028de43f9edfed13437c0964625b78391e2876248d3362b240c2bbfd7dbc3ff022ef2e07*2*0*67*5b*d6…

一休哥助手网页版如何使用

一休哥助手网页版可以使用GPT4提问了&#xff0c;具体操作流程如下&#xff1a; 1.登录网页版一休哥助手&#xff08;首次打开页面时&#xff0c;初始化久一点&#xff0c;请耐心等一下&#xff09; https://www.fudai.fun 2.登录后就可以使用GPT4了 3.你还可以自定义系统角色…