ElasticSearch聚合操作

目录

ElasticSearch聚合操作

基本语法

聚合的分类

后续示例数据

Metric Aggregation

Bucket Aggregation

ES聚合分析不精准原因分析

提高聚合精确度


ElasticSearch聚合操作

        Elasticsearch除搜索以外,提供了针对ES 数据进行统计分析的功能。聚合(aggregations)可以让我们极其方便的实现对数据的统计、分析、运算。例如:

什么品牌的手机最受欢迎?

这些手机的平均价格、最高价格、最低价格?

这些手机每月的销售情况如何?

基本语法

聚合查询的语法结构与其他查询相似,通常包含以下部分:

查询条件:指定需要聚合的文档,可以使用标准的 Elasticsearch 查询语法,如 term、match、range 等等。

聚合函数:指定要执行的聚合操作,如 sum、avg、min、max、terms、date_histogram 等等。每个聚合命令都会生成一个聚合结果。

聚合嵌套:聚合命令可以嵌套,以便更细粒度地分析数据。

GET <index_name>/_search
{"aggs": {"<aggs_name>": { // 聚合名称需要自己定义"<agg_type>": {"field": "<field_name>"}}}
}

aggs_name:聚合函数的名称

agg_type:聚合种类,比如是桶聚合(terms)或者是指标聚合(avg、sum、min、max等)

field_name:字段名称或者叫域名。


聚合的分类

Metric Aggregation:—些数学运算,可以对文档字段进行统计分析,类比Mysql中的 min(), max(), sum() 操作。

SELECT MIN(price), MAX(price) FROM products
#Metric聚合的DSL类比实现:
{"aggs":{"avg_price":{"avg":{"field":"price"}}}
}

Bucket Aggregation: 一些满足特定条件的文档的集合放置到一个桶里,每一个桶关联一个key,类比Mysql中的group by操作。

SELECT size COUNT(*) FROM products GROUP BY size
#bucket聚合的DSL类比实现:
{"aggs": {"by_size": {"terms": {"field": "size"}}
}

后续示例数据

DELETE /employees
#创建索引库
PUT /employees
{"mappings": {"properties": {"age":{"type": "integer"},"gender":{"type": "keyword"},"job":{"type" : "text","fields" : {"keyword" : {"type" : "keyword","ignore_above" : 50}}},"name":{"type": "keyword"},"salary":{"type": "integer"}}}
}PUT /employees/_bulk
{ "index" : {  "_id" : "1" } }
{ "name" : "Emma","age":32,"job":"Product Manager","gender":"female","salary":35000 }
{ "index" : {  "_id" : "2" } }
{ "name" : "Underwood","age":41,"job":"Dev Manager","gender":"male","salary": 50000}
{ "index" : {  "_id" : "3" } }
{ "name" : "Tran","age":25,"job":"Web Designer","gender":"male","salary":18000 }
{ "index" : {  "_id" : "4" } }
{ "name" : "Rivera","age":26,"job":"Web Designer","gender":"female","salary": 22000}
{ "index" : {  "_id" : "5" } }
{ "name" : "Rose","age":25,"job":"QA","gender":"female","salary":18000 }
{ "index" : {  "_id" : "6" } }
{ "name" : "Lucy","age":31,"job":"QA","gender":"female","salary": 25000}
{ "index" : {  "_id" : "7" } }
{ "name" : "Byrd","age":27,"job":"QA","gender":"male","salary":20000 }
{ "index" : {  "_id" : "8" } }
{ "name" : "Foster","age":27,"job":"Java Programmer","gender":"male","salary": 20000}
{ "index" : {  "_id" : "9" } }
{ "name" : "Gregory","age":32,"job":"Java Programmer","gender":"male","salary":22000 }
{ "index" : {  "_id" : "10" } }
{ "name" : "Bryant","age":20,"job":"Java Programmer","gender":"male","salary": 9000}
{ "index" : {  "_id" : "11" } }
{ "name" : "Jenny","age":36,"job":"Java Programmer","gender":"female","salary":38000 }
{ "index" : {  "_id" : "12" } }
{ "name" : "Mcdonald","age":31,"job":"Java Programmer","gender":"male","salary": 32000}
{ "index" : {  "_id" : "13" } }
{ "name" : "Jonthna","age":30,"job":"Java Programmer","gender":"female","salary":30000 }
{ "index" : {  "_id" : "14" } }
{ "name" : "Marshall","age":32,"job":"Javascript Programmer","gender":"male","salary": 25000}
{ "index" : {  "_id" : "15" } }
{ "name" : "King","age":33,"job":"Java Programmer","gender":"male","salary":28000 }
{ "index" : {  "_id" : "16" } }
{ "name" : "Mccarthy","age":21,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "17" } }
{ "name" : "Goodwin","age":25,"job":"Javascript Programmer","gender":"male","salary": 16000}
{ "index" : {  "_id" : "18" } }
{ "name" : "Catherine","age":29,"job":"Javascript Programmer","gender":"female","salary": 20000}
{ "index" : {  "_id" : "19" } }
{ "name" : "Boone","age":30,"job":"DBA","gender":"male","salary": 30000}
{ "index" : {  "_id" : "20" } }
{ "name" : "Kathy","age":29,"job":"DBA","gender":"female","salary": 20000}

Metric Aggregation

单值分析︰只输出一个分析结果(min, max, avg, sum等)

多值分析:输出多个分析结果(stats(统计), extended stats等)

查询员工的最低最高和平均工资

#多个 Metric 聚合,找到最低最高和平均工资
POST /employees/_search
{"size": 0,  "aggs": {"max_salary": {"max": {"field": "salary"}},"min_salary": {"min": {"field": "salary"}},"avg_salary": {"avg": {"field": "salary"}}}
}

对salary进行统计

# 一个聚合,输出多值
POST /employees/_search
{"size": 0,"aggs": {"stats_salary": {"stats": {"field":"salary"}}}
}

cardinate对搜索结果去重

POST /employees/_search
{"size": 0,"aggs": {"cardinate": {"cardinality": {"field": "job.keyword"}}}
}

Bucket Aggregation

        按照一定的规则,将文档分配到不同的桶中,从而达到分类的目的。ES提供的一些常见的 Bucket Aggregation。

       Terms,需要字段支持filedata,如果是keyword 默认支持fielddata,如果是text需要在Mapping 中开启fielddata,会按照分词后的结果进行分桶。

       数字类型支持Range / Data Range、Histogram(直方图) / Date Histogram。

       支持嵌套: 也就在桶里再做分桶。

获取job的分类信息

# 对keword 进行聚合
GET /employees/_search
{"size": 0,"aggs": {"jobs": {"terms": {"field":"job.keyword"}}}
}

聚合可配置属性有:

field:指定聚合字段。

size:指定聚合结果数量。

order:指定聚合结果排序方式。

       默认情况下,Bucket聚合会统计Bucket内的文档数量,记为_count,并且按照_count降序排序。我们可以指定order属性,自定义聚合的排序方式:

GET /employees/_search
{"size": 0,"aggs": {"jobs": {"terms": {"field":"job.keyword","size": 10,"order": {"_count": "desc" }}}}
}

限定聚合范围

#只对salary在10000元以上的文档聚合
GET /employees/_search
{"query": {"range": {"salary": {"gte": 10000 }}}, "size": 0,"aggs": {"jobs": {"terms": {"field":"job.keyword","size": 10,"order": {"_count": "desc" }}}}
}

ES聚合分析不精准原因分析

ElasticSearch在对海量数据进行聚合分析的时候会损失搜索的精准度来满足实时性的需求。

                  

Terms聚合分析的执行流程:

         

       不精准的原因: 数据分散到多个分片,聚合是每个分片的取 Top X,导致结果不精准。ES 可以不每个分片Top X,而是全量聚合,但这会有很大的性能问题。


提高聚合精确度

方案1:设置主分片为1

注意7.x版本已经默认为1。

适用场景:数据量小的小集群规模业务场景。

方案2:调大 shard_size 值

设置 shard_size 为比较大的值,官方推荐:size*1.5+10。shard_size 值越大,结果越趋近于精准聚合结果值。此外,还可以通过show_term_doc_count_error参数显示最差情况下的错误值,用于辅助确定 shard_size 大小。

  • size:是聚合结果的返回值,客户期望返回聚合排名前三,size值就是 3。
  • shard_size: 每个分片上聚合的数据条数。shard_size 原则上要大于等于 size

适用场景:数据量大、分片数多的集群业务场景。

方案3:使用Clickhouse/ Spark 进行精准聚合

适用场景:数据量非常大、聚合精度要求高、响应速度快的业务场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/483740.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Day32 文件属性 目录操作 库

文章目录 获取文件属性1.stat函数2.获取文件属性3.获取文件权限4.stat/fstat/lstat的区别&#xff1f; 目录操作库 Lib1.库的定义2.库的分类2.1 静态库2.2 动态库 3.静态库的制作4.动态库制作5.总结静态库和动态库 获取文件属性 1.stat函数 int stat(const char *path, struc…

C#,二叉搜索树(Binary Search Tree)的迭代方法与源代码

1 二叉搜索树 二叉搜索树&#xff08;BST&#xff0c;Binary Search Tree&#xff09;又称二叉查找树或二叉排序树。 一棵二叉搜索树是以二叉树来组织的&#xff0c;可以使用一个链表数据结构来表示&#xff0c;其中每一个结点就是一个对象。 一般地&#xff0c;除了key和位置…

uni-app 开发调试自动打开手机屏幕大小界面(Aidex移动端开发项目)

上效果&#xff1a; 下载Aidex的移动端项目并打开&#xff1a; 若依-ruoyi-AiDex-Uniapp: 若依-Ruoyi APP 移动解决方案&#xff0c;基于uniappuView封装的一套基础模版&#xff0c;开箱即用&#xff0c;免费开源&#xff0c;一份代码多终端适配&#xff0c;支持H5、支付宝小程…

Kotlin基础 7

1.apply函数详解 1.1. DSL /*** 为什么要传入扩展函数(泛型),而不是一个普通的匿名函数* T.()->Unit* 扩展函数里自带了接收者对象的this隐式调用* 为什么是泛型的扩展函数?* 因为是由this 隐式调用 this 类型就是泛型类型&#xff0c; 相当于this的扩展函数&#xff0c;…

Aidex移动端项目入门

运行效果 项目源码下载 若依-ruoyi-AiDex-Uniapp: 若依-Ruoyi APP 移动解决方案&#xff0c;基于uniappuView封装的一套基础模版&#xff0c;开箱即用&#xff0c;免费开源&#xff0c;一份代码多终端适配&#xff0c;支持H5、支付宝小程序、微信小程序、APP&#xff0c;实现了…

解决MobaXterm网络错误连接超时问题

报错页面&#xff1a; 报错原因&#xff1a; ①网络断开了 ②网络端口&#xff0c;端口号改变 解决办法&#xff1a; ①重新连接网络按R ②固定端口号 第一步&#xff1a;编辑------>虚拟机网络编辑器&#xff08;我的Linux在虚拟机里&#xff09; 第二步&#xff1a;用…

Chrome插件精选 — 缓存清理

Chrome实现同一功能的插件往往有多款产品&#xff0c;逐一去安装试用耗时又费力&#xff0c;在此为某一类型插件挑选出比较好用的一款或几款&#xff0c;尽量满足界面精致、功能齐全、设置选项丰富的使用要求&#xff0c;便于节省一个个去尝试的时间和精力。 1. Chrome清理大师…

如何画架构图:从概念到实践

如何画架构图&#xff1a;从概念到实践 免费在线作图工具&#xff0c;点击邀请链接注册赠送7天会员&#xff1a;https://www.processon.com/u/5d3967afe4b0208611113845 在软件开发和系统设计中&#xff0c;架构图是一种重要的工具&#xff0c;它能够帮助开发人员和利益相关者…

嵌入式Qt 计算器核心算法_2

一.中缀表达式转后缀表达式 中缀表达式是最常用的算术表达式形式——运算符在运算数中间。但运算时需要考虑运算符优先级。 ​后缀表达式是计算机容易运算的表达式&#xff0c;运算符在运算数后面&#xff0c;从左到右进行运算,无需考虑优先级,运算呈线性结构。 1 2 * 3// …

打败茅台的“老酒”

作者&#xff1a;翻篇 琥珀酒研社快评&#xff1a; 最可恨的 从来不是什么强大敌人 而是美名其曰的猪队友 要不怎么有网友说 酒鬼酒太惨了 当年要不是败给内鬼 又曝出塑化剂事件 错过白酒发展的黄金十年 不说打败茅台、五粮液 但成为另一个茅台、五粮液 那完全有希…

Vue3_基础使用_4_路由器Router

概念&#xff1a; 路由&#xff1a;是一个key-value的对应关系叫路由。 路由器&#xff1a;管理多个路由的集合或者叫设备称为路由器。 由于现在组件替代了以前的mvc中的cshtml, 组件的菜单切换也不用我手动去写&#xff0c;vue给我们通过配置完成。 实现简单的路由跳转&…

10.vue学习笔记(组件数据传递-props回调函数子传父+透传Attributes+插槽slot)

文章目录 1.组件数据传递2.透传Attributes&#xff08;了解&#xff09;禁用Attributes继承 3.插槽slot 1.组件数据传递 我们之前讲解过了组件之间的数据传递&#xff0c;props 和 自定义事件 两种方式 props&#xff1a;父传子 自定义事件&#xff1a;子传父 props通过额外方…