文章目录
- YOLOv5代码解读[02] models/yolov5l.yaml文件解析
- yolov5l.yaml文件
- 检测头1--->耦合头
- 检测头2--->解耦头
- 检测头3--->ASFF检测头
- Model类解析
- parse_model函数
YOLOv5代码解读[02] models/yolov5l.yaml文件解析
yolov5l.yaml文件

nc: 27
depth_multiple: 1.0
width_multiple: 1.0
anchors:- [10,13, 16,30, 33,23] - [30,61, 62,45, 59,119] - [116,90, 156,198, 373,326]
backbone:[[-1, 1, Conv, [64, 6, 2, 2]], [-1, 1, Conv, [128, 3, 2]], [-1, 3, C3, [128]],[-1, 1, Conv, [256, 3, 2]], [-1, 6, C3, [256]],[-1, 1, Conv, [512, 3, 2]], [-1, 9, C3, [512]],[-1, 1, Conv, [1024, 3, 2]], [-1, 3, C3, [1024]],[-1, 1, SPPF, [1024, 5]], ]
head:[[-1, 1, Conv, [512, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 6], 1, Concat, [1]], [-1, 3, C3, [512, False]], [-1, 1, Conv, [256, 1, 1]],[-1, 1, nn.Upsample, [None, 2, 'nearest']],[[-1, 4], 1, Concat, [1]], [-1, 3, C3, [256, False]], [-1, 1, Conv, [256, 3, 2]],[[-1, 14], 1, Concat, [1]], [-1, 3, C3, [512, False]], [-1, 1, Conv, [512, 3, 2]],[[-1, 10], 1, Concat, [1]], [-1, 3, C3, [1024, False]], [[17, 20, 23], 1, Detect, [nc, anchors, False]], ]
检测头1—>耦合头
class Detect(nn.Module):stride = None onnx_dynamic = Falseexport = Falsedef __init__(self, nc=80, anchors=(), Decoupled=False, ch=(), inplace=True): super().__init__()self.decoupled = Decoupledself.nc = nc self.no = nc + 5 self.nl = len(anchors) self.na = len(anchors[0]) // 2 self.grid = [torch.zeros(1)] * self.nl self.anchor_grid = [torch.zeros(1)] * self.nl self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) if self.decoupled:self.m = nn.ModuleList(DecoupledHead(x, self.nc, anchors) for x in ch) else:self.m = nn.ModuleList(nn.Conv2d(x, self.no*self.na, 1) for x in ch) self.inplace = inplace def forward(self, x):z = []for i in range(self.nl):x[i] = self.m[i](x[i])bs, _, ny, nx = x[i].shapex[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training:if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]else:xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):d = self.anchors[i].devicet = self.anchors[i].dtypey, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)if torch_1_10:yv, xv = torch.meshgrid(y, x, indexing='ij')else:yv, xv = torch.meshgrid(y, x)grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2))anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2))return grid, anchor_grid
检测头2—>解耦头
class DecoupledHead(nn.Module):def __init__(self, ch=256, nc=80, anchors=()):super().__init__()self.nc = ncself.nl = len(anchors)self.na = len(anchors[0]) // 2self.merge = Conv(ch, 128 , 1, 1) self.cls_convs1 = Conv(128, 64, 3, 1, 1)self.cls_convs2 = Conv(64, 64, 3, 1, 1)self.reg_convs1 = Conv(128, 64, 3, 1, 1)self.reg_convs2 = Conv(64, 64, 3, 1, 1)self.cls_preds = nn.Conv2d(64 , self.nc*self.na, 1)self.reg_preds = nn.Conv2d(64 , 4*self.na, 1)self.obj_preds = nn.Conv2d(64 , 1*self.na, 1)def forward(self, x):x = self.merge(x)x1 = self.cls_convs1(x)x1 = self.cls_convs2(x1)x1 = self.cls_preds(x1)x2 = self.reg_convs1(x)x2 = self.reg_convs2(x2)x21 = self.reg_preds(x2)x22 = self.obj_preds(x2)out = torch.cat([x21, x22, x1], 1)return out
检测头3—>ASFF检测头
class ASFF_Detect(nn.Module): stride = None onnx_dynamic = False def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True): super().__init__()self.nc = nc self.no = nc + 5 self.nl = len(anchors) self.na = len(anchors[0]) // 2 self.grid = [torch.zeros(1)] * self.nl self.anchor_grid = [torch.zeros(1)] * self.nlself.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) self.inplace = inplace def forward(self, x):z = [] result = []result.append(self.l2_fusion(x))result.append(self.l1_fusion(x))result.append(self.l0_fusion(x))x = result for i in range(self.nl):x[i] = self.m[i](x[i]) bs, _, ny, nx = x[i].shape x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()if not self.training: if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)y = x[i].sigmoid()if self.inplace:y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] else: xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] y = torch.cat((xy, wh, y[..., 4:]), -1)z.append(y.view(bs, -1, self.no))return x if self.training else (torch.cat(z, 1), x)def _make_grid(self, nx=20, ny=20, i=0):d = self.anchors[i].deviceif check_version(torch.__version__, '1.10.0'): yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')else:yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()return grid, anchor_grid
Model类解析
class Model(nn.Module):def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): super().__init__()if isinstance(cfg, dict):self.yaml = cfg else: self.yaml_file = Path(cfg).namewith open(cfg, encoding='ascii', errors='ignore') as f:self.yaml = yaml.safe_load(f) ch = self.yaml['ch'] = self.yaml.get('ch', ch) if nc and nc != self.yaml['nc']:LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")self.yaml['nc'] = nc if anchors:LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')self.yaml['anchors'] = round(anchors) self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) self.names = [str(i) for i in range(self.yaml['nc'])] self.inplace = self.yaml.get('inplace', True)m = self.model[-1] if isinstance(m, Detect) or isinstance(m, ASFF_Detect):s = 256m.inplace = self.inplacem.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])m.anchors /= m.stride.view(-1, 1, 1)check_anchor_order(m)self.stride = m.strideif m.decoupled:LOGGER.info('decoupled done')pass else:self._initialize_biases() initialize_weights(self)self.info()LOGGER.info('')def forward(self, x, augment=False, profile=False, visualize=False):if augment:return self._forward_augment(x) return self._forward_once(x, profile, visualize) def _forward_augment(self, x):img_size = x.shape[-2:] s = [1, 0.83, 0.67] f = [None, 3, None] y = [] for si, fi in zip(s, f):xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))yi = self._forward_once(xi)[0] yi = self._descale_pred(yi, fi, si, img_size)y.append(yi)y = self._clip_augmented(y) return torch.cat(y, 1), None def _forward_once(self, x, profile=False, visualize=False):y, dt = [], [] for m in self.model:if m.f != -1: x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]if profile:self._profile_one_layer(m, x, dt)x = m(x)y.append(x if m.i in self.save else None) if visualize:feature_visualization(x, m.type, m.i, save_dir=visualize)return xdef _descale_pred(self, p, flips, scale, img_size):if self.inplace:p[..., :4] /= scale if flips == 2:p[..., 1] = img_size[0] - p[..., 1] elif flips == 3:p[..., 0] = img_size[1] - p[..., 0] else:x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale if flips == 2:y = img_size[0] - y elif flips == 3:x = img_size[1] - x p = torch.cat((x, y, wh, p[..., 4:]), -1)return pdef _clip_augmented(self, y):nl = self.model[-1].nl g = sum(4 ** x for x in range(nl)) e = 1 i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) y[0] = y[0][:, :-i] i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) y[-1] = y[-1][:, i:] return ydef _profile_one_layer(self, m, x, dt):c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 t = time_sync()for _ in range(10):m(x.copy() if c else x)dt.append((time_sync() - t) * 100)if m == self.model[0]:LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}")LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')if c:LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")def _initialize_biases(self, cf=None): m = self.model[-1] for mi, s in zip(m.m, m.stride): b = mi.bias.view(m.na, -1) b.data[:, 4] += math.log(8 / (640 / s) ** 2) b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)def _print_biases(self):m = self.model[-1] for mi in m.m: b = mi.bias.detach().view(m.na, -1).T LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))def _print_weights(self):for m in self.model.modules():if type(m) is Bottleneck:LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) def fuse(self): LOGGER.info('Fusing layers... ')for m in self.model.modules():if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):m.conv = fuse_conv_and_bn(m.conv, m.bn) delattr(m, 'bn') m.forward = m.forward_fuse self.info()return selfdef info(self, verbose=False, img_size=640): model_info(self, verbose, img_size)def _apply(self, fn):self = super()._apply(fn)m = self.model[-1] if isinstance(m, Detect) or isinstance(m, ASFF_Detect) or isinstance(m, Decoupled_Detect):m.stride = fn(m.stride)m.grid = list(map(fn, m.grid))if isinstance(m.anchor_grid, list):m.anchor_grid = list(map(fn, m.anchor_grid))return self
parse_model函数
def parse_model(d, ch): LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors no = na * (nc + 5) layers, save, c2 = [], [], ch[-1] for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):m = eval(m) if isinstance(m, str) else m for j, a in enumerate(args):try:args[j] = eval(a) if isinstance(a, str) else a except NameError:passn = n_ = max(round(n*gd), 1) if n > 1 else n if m in [Conv, DWConv, CrossConv, GhostConv, Bottleneck, GhostBottleneck,BottleneckCSP, MobileBottleneck, SPP, SPPF, MixConv2d, Focus,InvertedResidual, ConvBNReLU, C3, C3TR, C3SPP, C3Ghost, CoordAtt,CoordAttv2, OSA_Stage]:c1, c2 = ch[f], args[0]if c2 != no: c2 = make_divisible(c2*gw, 8)args = [c1, c2, *args[1:]]if m in [BottleneckCSP, C3, C3TR, C3Ghost]:args.insert(2, n) n = 1elif m is nn.BatchNorm2d:args = [ch[f]]elif m is Concat:c2 = sum(ch[x] for x in f)elif m is Detect:args.append([ch[x] for x in f])if isinstance(args[1], int): args[1] = [list(range(args[1] * 2))] * len(f)elif m is ASFF_Detect :args.append([ch[x] for x in f])if isinstance(args[1], int): args[1] = [list(range(args[1] * 2))] * len(f) elif m is Contract:c2 = ch[f] * args[0] ** 2elif m is Expand:c2 = ch[f] // args[0] ** 2elif m is ConvNeXt_Block:c2 = args[0]args = args[1:]else:c2 = ch[f]m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) t = str(m)[8:-2].replace('__main__.', '') np = sum(x.numel() for x in m_.parameters()) m_.i, m_.f, m_.type, m_.np = i, f, t, np LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) layers.append(m_)if i == 0:ch = []ch.append(c2)return nn.Sequential(*layers), sorted(save)