图——最小生成树实现(Kruskal算法,prime算法)

目录

预备知识:

最小生成树概念:

Kruskal算法:

代码实现如下:

测试:

Prime算法 :

代码实现如下:

测试:

结语:


预备知识:

连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点 都是连通的,则称此图为连通图。

生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。

并查集:

由于本文章重点不在讲述并查集,故下面我简单描述并查集的作用,各种方法,源码如下。

并查集的作用:可以将一个数组中的元素分为多个小组的数据结构。

方法:

findRoot(x):查找x的根。

union(int x1, int x2):合并x1和x2。

isSameSet(int x1, int x2):判断两个数字 是不是在同一个集合当中。

import java.util.Arrays;public class UnionFindSet {private int[] elem;//底层是数组public UnionFindSet(int n){this.elem = new int[n];Arrays.fill(elem,-1);//整体初始化为-1:代表根}/*** 查找x的根* @param x* @return*/public int findRoot(int x){if(x < 0){throw new IndexOutOfBoundsException("数据不合法");}while(elem[x] >= 0){x = elem[x];}return x;}/*** 合并x1和x2* @param x1* @param x2*/public void union(int x1,int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);if(index1 == index2){//说明x1和x2的根是相同的,不需要进行合并return;}elem[index1] = elem[index1] + elem[index2];elem[index2] = index1;//将x2合并到x1}/*** 判断两个数字是不是在同一个集合当中* @param x1* @param x2* @return*/public boolean isSameSet(int x1,int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);if(index1 == index2){return true;}else{return false;}} 
}

最小生成树概念:

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树 就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。

若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准则有三 条:

(1) 只能使用图中的边来构造最小生成树。

(2) 只能使用恰好n-1条边来连接图中的n个顶点。

(3) 选用的n-1条边不能构成回路。

构造最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略。

贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体最优的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优解。

Kruskal算法:

Kruskal算法采用全局贪心的策略,其步骤如下:

任给一个有n个顶点的连通网络N={V,E}。

(1)首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量。

(2)其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量(若相同则不加因为会生成环),则将此边加入到G中。

(3)如此重复,直到所有顶点在同一个连通分量上为止。

核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树。

 具体过程如下图所示:按照abc..的循序,箭头为当前要操作的位置(不一定能添加,黑色为可添加)。

  

代码实现如下:

先构造关于Edge的小根堆,由于是自定义类,故要自己实现一个比较器Comparator。

1. 定义优先级队列存储边构建小根堆 跟进权重进行比较。

2. 把矩阵当中的边全部入队列。

3. 定义并查集判断将来两条边是不是在一个集合(避免构成环)。

4. 由于篇幅有限matrix之类的前文实现过这里不在实现有需要的友友可以前往图的概念

static class Edge{public int srcIndex;public int destIndex;public int weight;public Edge(int srcIndex,int destIndex,int weight){this.srcIndex = srcIndex;this.destIndex = destIndex;this.weight = weight;}}public int kruskal(GraphByMatrix minTree){//1. 定义优先级队列 存储边 构建小根堆 跟进权重进行比较PriorityQueue<Edge> minHeap = new PriorityQueue<>(new Comparator<Edge>(){@Overridepublic int compare(Edge o1,Edge o2){return o1.weight - o2.weight;}});int n = matrix.length;//2. 把矩阵当中的边全部入队列for(int i = 0;i < n;i++){for(int j = 0;j < n;j++){//因为是无向图,所以只入一半就可以 i < j 即可if(i < j && matrix[i][j] != Integer.MAX_VALUE){Edge edge = new Edge(i,j,matrix[i][j]);minHeap.offer(edge);}}}//3、最后整个的权重int totalWeight = 0;int size= 0;//4.定义并查集 判断将来两条边 是不是在一个集合UnionFindSet ufs = new UnionFindSet(n);//5. 出优先级队列的n-1条边while(size < n-1 &&!minHeap.isEmpty()){Edge min  = minHeap.poll();int srcIndex = min.srcIndex;int destIndex = min.destIndex;//判断是不在在同一个集合当中,在一个集合 就不能添加if(!ufs.isSameSet(srcIndex,destIndex)){//打印选出的边System.out.println("选择的边: "+ arrayV[srcIndex] + "-> "+ arrayV[destIndex] + ":"+matrix[srcIndex][destIndex]);?minTree.addEdgeUseIndex(srcIndex,destIndex,min.weight);totalWeight += min.weight;//添加完成之后,说明 可以 合并到同一个集合ufs.union(srcIndex,destIndex);size++;}}//如果是 选出n-1条边,否则就说明不是连通图if(size == n-1){return totalWeight;}//不是连通图, 可能选不出n-1条边  假设一个图中,有其他的顶点独立着return -1;}private void addEdgeUseIndex(int srcIndex,int destIndex,int weight) {matrix[srcIndex][destIndex] = weight;//如果是无向图 那么相反的位置 也同样需要置为空if(!isDirect) {matrix[destIndex][srcIndex] = weight;}}

测试:

测试代码对应的图:

测试代码 :

public static void main(String[] args) {testGraphMinTreeKruskal();}public static void testGraphMinTreeKruskal() {String str = "abcdefghi";char[] array =str.toCharArray();GraphByMatrix g = new GraphByMatrix(str.length(),false);g.initArrayV(array);g.addEdge('a', 'b', 4);g.addEdge('a', 'h', 8);//g.addEdge('a', 'h', 9);g.addEdge('b', 'c', 8);g.addEdge('b', 'h', 11);g.addEdge('c', 'i', 2);g.addEdge('c', 'f', 4);g.addEdge('c', 'd', 7);g.addEdge('d', 'f', 14);g.addEdge('d', 'e', 9);g.addEdge('e', 'f', 10);g.addEdge('f', 'g', 2);g.addEdge('g', 'h', 1);g.addEdge('g', 'i', 6);g.addEdge('h', 'i', 7);GraphByMatrix  kminTree = new GraphByMatrix(str.length(),false);System.out.println(g.kruskal(kminTree));kminTree.printGraph();}

效果:

显然正确💯

Prime算法 :

Primel算法采用局部贪心的策略,其步骤如下:

按照字母顺序abc....看。

代码实现如下:

由于是局部贪心用两个Set,那么天然就不会有环,故prime可以不用并查集。

1. 先获取当前顶点的下标。

2. 定义一个X集合,把当前的起点下标存进去。

3. 定义一个Y集合,存储目标顶点的元素。

4. 除了刚刚的起点,其他的顶点需要放到Y。

5. 从X集合中的点到Y集合的点中,连接的边中找出最小值放到优先级队列。

6. 把当前顶点连接出去的所有的边放入队列。

7.把这次的目标点,添加到X集合,变成了起点记得把之前的目标点,从Y集合删除掉。

8.遍历刚刚添加的新起点destIndex,连接出去的所有边,再次添加到优先级队列。

public int prim(GraphByMatrix minTree,char chV){//1. 先获取当前顶点的下标int srcIndex = getIndexOfV(chV);int n = arrayV.length;//2. 定义一个X集合,把当前的起点下标存进去Set<Integer> setX = new HashSet<>();//3. 定义一个Y集合,存储目标顶点的元素Set<Integer> setY = new HashSet<>();setX.add(srcIndex);//4. 除了刚刚的起点,其他的顶点需要放到Y集合for(int i = 0;i < n;i++){if(i != srcIndex){setY.add(i);}}//5. 从X集合中的点到Y集合的点中,连接的边中找出最小值放到优先级队列PriorityQueue<Edge> minHeap = new PriorityQueue<>(new Comparator<Edge>(){@Overridepublic int compare(Edge o1,Edge o2){return o1.weight - o2.weight;}});//6. 把当前顶点连接出去的所有的边放入队列for(int i = 0;i < n;i++){if(matrix[srcIndex][i] != Integer.MAX_VALUE){minHeap.offer(new Edge(srcIndex,i,matrix[srcIndex][i]));}}int size = 0;int totalWeight = 0;while(size < n - 1 && !minHeap.isEmpty()){//7. 取出队列中的第一条边Edge min = minHeap.poll();int srcI = min.srcIndex;int destI = min.destIndex;//起始点本身就在X集合,所以这里只需要判断目标点即可if(setX.contains(destI)){//包含}else{//8. 直接将该边 放入最小生成树minTree.addEdgeUseIndex(srcI,destI,min.weight);//9. 每选一条边 就打印一条语句System.out.println("选择的边: "+ arrayV[srcI] + "-> "+ arrayV[destI] + ":"+matrix[srcI][destI]);size++;totalWeight += min.weight;//10.把这次的目标点,添加到X集合,变成了起点setX.add(destI);//11.记得把之前的目标点,从Y集合删除掉setY.remove(destI);//12. 遍历刚刚添加的新起点destIndex,连接出去的所有边,再次添加到优先级队列for(int i = 0;i < n;i++){// 13. !setX.contains(i) 判断目标点不能再X这个集合 例如: a->b 就包含了b->aif(matrix[destI][i] != Integer.MAX_VALUE && !setX.contains(i)){minHeap.offer(new Edge(destI,i,matrix[destI][i]));}}}}if(size == n-1){return totalWeight;}else{return -1;}}

测试:

测试对应的图:

测试代码 :

public static void main(String[] args) {testGraphMinTreePrime();}public static void testGraphMinTreePrime() {String str = "abcdefghi";char[] array = str.toCharArray();GraphByMatrix g = new GraphByMatrix(str.length(), false);g.initArrayV(array);g.addEdge('a', 'b', 4);g.addEdge('a', 'h', 8);//g.addEdge('a', 'h', 9);g.addEdge('b', 'c', 8);g.addEdge('b', 'h', 11);g.addEdge('c', 'i', 2);g.addEdge('c', 'f', 4);g.addEdge('c', 'd', 7);g.addEdge('d', 'f', 14);g.addEdge('d', 'e', 9);g.addEdge('e', 'f', 10);g.addEdge('f', 'g', 2);g.addEdge('g', 'h', 1);g.addEdge('g', 'i', 6);g.addEdge('h', 'i', 7);GraphByMatrix primTree = new GraphByMatrix(str.length(), false);System.out.println(g.prim(primTree, 'a'));primTree.printGraph();}

效果:

结语:

其实写博客不仅仅是为了教大家,同时这也有利于我巩固自己的知识点,和一个学习的总结,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进,如果大家有所收获的话还请不要吝啬你们的点赞收藏和关注,这可以激励我写出更加优秀的文章。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/484073.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

⭐北邮复试刷题LCR 018. 验证回文串__双指针 (力扣119经典题变种挑战)

LCR 018. 验证回文串 给定一个字符串 s &#xff0c;验证 s 是否是 回文串 &#xff0c;只考虑字母和数字字符&#xff0c;可以忽略字母的大小写。 本题中&#xff0c;将空字符串定义为有效的 回文串 。 示例 1: 输入: s “A man, a plan, a canal: Panama” 输出: true 解释…

你好,iLogtail 2.0!

作者&#xff1a;张浩翔&#xff08;笃敏&#xff09; 概述 随着可观测数据采集需求的不断推陈出新&#xff0c;多样化的数据输入输出选项、个性化的数据处理能力组合、以及高性能的数据处理吞吐能力已经成为顶流可观测数据采集器的必备条件。然而&#xff0c;由于历史原因&a…

设计师常常从哪些网站获取灵感?

1、Pinterest Pinterest是一个基于图片共享的社交网站。用户可以在平台上浏览、收集和分享各种想法、设计灵感和项目。Pinterest用户可以在其网站或应用程序上创建虚拟画板&#xff08;boards&#xff09;&#xff0c;根据主题或兴趣收集和整理你最喜欢的图片&#xff08;包括…

【k近邻】Kd树构造与最近邻搜索示例

【k近邻】 K-Nearest Neighbors算法原理及流程 【k近邻】 K-Nearest Neighbors算法距离度量选择与数据维度归一化 【k近邻】 K-Nearest Neighbors算法k值的选择 【k近邻】 Kd树的构造与最近邻搜索算法 【k近邻】 Kd树构造与最近邻搜索示例 近邻法的实现需要考虑如何快速搜索个最…

QT的UI入门

二、UI入门 QWidget类&#xff08;熟悉&#xff09; QWidget类是所有组件和窗口的基类&#xff0c;内部包含了一些基础的界面特性。 常用属性&#xff1a; 修改坐标 x : const int 横坐标&#xff0c;每个图形的左上角为定位点&#xff0c;横轴的零点在屏幕的最左边&#xff0c…

docker 容器内服务随容器自动启动

docker 容器内服务随容器自动启动 背景准备工作方案一&#xff0c;直接修改.bashrc文件&#xff08;简单粗暴&#xff09;方案二&#xff0c;编写启动脚本加入.bashrc文件&#xff08;文明一点&#xff09;制作nginx服务自启动镜像测试新镜像&#xff0c;nginx服务随容器自动启…

恶意代码识别率提升95%!谷歌开源人工智能网络安全防御工具

近日&#xff0c;谷歌日前宣布发起网络安全人工智能防御计划&#xff0c;旨在利用人工智能技术提升网络安全水平&#xff0c;扭转困扰网络安全行业的“防守困境”。 该计划的核心举措是开源Magika&#xff0c;这是一款用于文件类型识别的AI工具&#xff0c;能够帮助检测恶意软件…

C++学习Day09之系统标准异常

目录 一、程序及输出1.1 系统标准异常示例1.2 标准异常表格 二、分析与总结 一、程序及输出 1.1 系统标准异常示例 #include<iostream> using namespace std; #include <stdexcept> // std 标准 except 异常class Person { public:Person(int age){if (age <…

网络安全“降本增笑”的三大帮手

在网络安全这个快速变化和危机四伏的领域中&#xff0c;通过使用正确的工具和方法&#xff0c;我们可以在工作中取得更高的效率&#xff0c;并降低相关成本。 雷池社区版 雷池社区版—开源Web应用防火墙。这款产品凭借强大的规则引擎&#xff0c;它允许用户自定义安全策略&…

Docker本地部署Rss订阅工具并实现公网远程访问

文章目录 1. Docker 安装2. Docker 部署Rsshub3. 本地访问Rsshub4. Linux安装Cpolar5. 配置公网地址6. 远程访问Rsshub7. 固定Cpolar公网地址8. 固定地址访问 Rsshub是一个开源、简单易用、易于扩展的RSS生成器&#xff0c;它可以为各种内容生成RSS订阅源。 Rsshub借助于开源社…

五、分类算法 总结

代码&#xff1a; from sklearn.datasets import load_iris, fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.naive_bayes import MultinomialNB from s…

成年人学英语其实有个捷径,但你们都不信

上班了…… 我不想上班&#xff0c;只想躺平&#xff0c;同时银行卡上的余额还能够不断的增加。 当然现阶段肯定是不行的&#xff0c;我仍要靠打工养活自己&#xff0c;而且先要获得第一桶金。 第一桶金在何方&#xff1f;我还不知道&#xff0c;人在迷茫时&#xff0c;就来学英…