基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

基于ORB-SLAM2与YOLOv8剔除动态特征点(三种方法)

写上篇文章时测试过程比较乱,写的时候有些地方有点失误,所以重新写了这篇
本文内容均在RGB-D环境下进行程序测试

本文涉及到的动态特征点剔除速度均是以https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_xyz数据进行实验

方法1:segment坐标点集合逐一排查剔除

利用YOLOv8的segment获取动态对象(这里指人person)所在区域的坐标点集合segpoints,之后将提取的特征点的坐标逐一与segpoints中的所有坐标作判断,将出现在segpoints中的特征点的坐标改为(-1,-1),然后在畸变校正时会将坐标为(-1,-1)的异常坐标剔除。但是segpoints中的数据量太大,完成一次剔除任务花费的时间太长(基本在40~50ms,这个与动态区域的大小即segpoints中的点数是有关的)。另外,特征点坐标为浮点型,而segpoints中的坐标为整型,其实没必要非用 = 判断,可以判断特征点在获取的动态目标区域坐标的周围1(可以调整,我最终在程序中使用半径为2)个像素就可以了,这已经很接近=了。

下面是部分代码:

std::vector<cv::Point> segpoints;
for (auto& obj:objs_seg) {int idx = obj.label;if (idx == 0){cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}}
}
// 动态特征点的判断
for (int k=0; k<mvKeys.size(); ++k){const cv::KeyPoint& kp = mvKeys[k];bool isDynamic = false;for (int kk = 0; kk < segpoints.size(); ++kk) {if (kp.pt.x > segpoints[kk].x-3 && kp.pt.x < segpoints[kk].x+3 && kp.pt.y > segpoints[kk].y-3 && kp.pt.y < segpoints[kk].y+3) {mvKeys[k] = cv::KeyPoint(-1,-1,-1);isDynamic = true;break;}}vbInDynamic_mvKeys.push_back(isDynamic);
}

方法2:利用目标检测框

利用YOLOv8进行目标检测,将检测到的目标分为两类:动态对象和静态对象。
这里仅将person设为动态对象。获取动态对象及静态对象的检测框后判断提取的特征点是否在动态对象检测框内以及是否在静态对象检测框内。

1.特征点在动态对象检测框内而不在静态对象检测框内,则满足剔除条件,将其剔除;
2.其余情况皆不满足剔除条件。

采用这种方法速度提升至0.02~0.03ms.

struct DyObject {cv::Rect_<float> rect;int              id = 0;
};std::vector<ORB_SLAM2::DyObject> detect_results;
for (auto& obj:objs_det)
{int class_id = 0;// id为0代表其为静态对象int class_label = obj.label;if (class_label == 0){// 如果是人person则将其id改为1即动态对象class_id = 1;}cv::Rect_<float> bbox;bbox = obj.rect;ORB_SLAM2::DyObject detect_result;detect_result.rect = bbox;detect_result.id = class_id;detect_results.push_back(detect_result);
}
// 判断特征点是否在动态检测框内
bool Frame::isDynamic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_dynamic = false;for(auto& result:detect_results){int idx = result.id;if (idx == 1){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left-2 && kp_u<right+2 && kp_v>top-2 && kp_v<bottom-2){// 如果特征点在动态目标检测框内is_dynamic = true;}}}return is_dynamic;
}// 判断特征点是否在静态检测框内
bool Frame::isStatic(const int& i,std::vector<DyObject>& detect_results){const cv::KeyPoint& kp = mvKeys[i];float kp_u  = kp.pt.x;float kp_v = kp.pt.y;bool is_static = false;for(auto& result:detect_results){int idx = result.id;if (idx == 0){double left = result.rect.x;double top = result.rect.y;double right = result.rect.x + result.rect.width;double bottom = result.rect.y + result.rect.height;if(kp_u>left && kp_u<right && kp_v>top && kp_v<bottom){is_static = true;}}}return is_static;}

优化(方法3):目标检测框+实例分割

针对方法1关于速度即处理数据量太大的问题,其实可以将方法1与方法2结合运用,先利用方法2进行判断特征点是否在动态目标的检测框内(不过不需要判断是否在静态目标的检测框内了,方法2中如果在静态目标检测框内就保留该点而不会被剔除,这里舍弃此步骤也是宁缺毋滥的原则),如果判断结果为真的话,则利用方法1将特征点与实例分割的Mask坐标进行判断即可,这样就可以节省很多时间了。

// 动态目标特征点的判断
//先定义一种目标检测的结果结构
struct DyObject {cv::Rect_<float> rect;std::vector<cv::Point> pts;int              id = 0;
};for (auto& obj:objs_seg) {int idx = obj.label;std::vector<cv::Point> segpoints;cv::Mat locations;cv::findNonZero(obj.boxMask == 255, locations);for (int i = 0; i < locations.rows; ++i) {cv::Point segpoint = locations.at<cv::Point>(i);cv::Rect_<float> rect;segpoint.x += obj.rect.x;segpoint.y += obj.rect.y;segpoints.push_back(segpoint);}ORB_SLAM2::DyObject detect_result;detect_result.rect = obj.rect;detect_result.pts = segpoints;detect_result.id = idx;detect_results.push_back(detect_result);
}

速度控制在了25ms以内。

方案1可以被舍弃了,对于方法2与方法3,测试一下二者在精度上的差异,因为从上面的工作中可以看出方法2的速度很快,如果精度差异很小的话为了SLAM实时性还是采用方法2比较好。
TUM提供了SLAM轨迹精度评估工具:
evaluate_ate.py、evaluate_rpe.py、associate.py
具体内容:https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
将上面三个代码下载后就可以对TUM数据集的结果轨迹进行精度评估了。

首先是方法2仅利用目标检测框的一个特征点剔除情况:紫色的点就是之后会被剔除的点。

然后是方法3的特征点剔除情况:

上面两张图片的对比可以看出方法2会将一些有用的特征点也标记为动态特征点,而方法3会更精确。关于图片中红色圆圈,是我做的纹理分析,目前还没完全做好所以就先不讲了。

我对ORB-SLAM2与我基于ORB-SLAM2andYOLOv8(方法2与方法3)在数据集rgbd_dataset_freiburg3_walking_xyz的结果轨迹进行了精度评估,结果如下:

精度评估
TUM-freiburg3_walking_xyzORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.5555830.0225210.018761
ATE0.4742760.0173880.014755

方法3利用目标检测框+实例分割的方法的精度是最优的。

下面再测测https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_walking_rpy

精度评估
TUM-freiburg3_walking_rpyORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.9686050.0358530.035431
ATE0.7880890.0299420.028222

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/download#freiburg3_sitting_halfsphere

精度评估
TUM-freiburg3_walking_halfphereORB-SLAM2DWT-SLAM detDWT-SLAM seg
RPE0.3579840.0452500.029718
ATE0.2940750.0363010.023612

从以上从三个数据集获得的三组精度评估结果来看,方法3的精度最高,25ms的动态特征点处理速度也是可接受的(我的电脑算是比较旧了)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/484948.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kubernetes 卷存储 NFS | nfs搭建配置 原理介绍 nfs作为存储卷使用

目录 1、NFS介绍2、NFS服务部署2.1安装nfs服务 (服务端配置)2.2启动NFS服务2.3 服务检查2.4 客户端配置 3、nfs作为存储卷使用3.1 nfs作为volume3.2 nfs存储的缺点3.3 nfs作为PersistentVolum 4、nfs作为动态存储提供5、总结 1、NFS介绍 NFS&#xff08;Network File System&a…

模糊的照片怎么变清晰?这些方法让你快速完成

在我们日常生活中&#xff0c;拍照已经成为记录生活点滴的重要方式。然而&#xff0c;有时候由于各种原因&#xff0c;拍摄出来的照片会显得模糊不清&#xff0c;这让我们感到十分苦恼。尤其是当我们希望珍藏那些对我们有着特殊意义的照片时&#xff0c;却因为清晰度不足而无法…

智慧公厕是什么?智慧公厕是构建智慧城市的环境卫生基石

随着城市化进程的不断加速&#xff0c;城市人口密度和流动性也逐渐增大&#xff0c;对城市公共设施的需求与日俱增。而在这些公共设施中&#xff0c;公厕作为城市基础设施中不可或缺的一环&#xff0c;对城市的环境卫生和市民生活质量起着举足轻重的作用。如何提高公厕的管理效…

思考:如何写出让同事难以维护的代码?

本文从【程序命名&注释】【数据类型&类&对象】【控制执行流程】和【程序/结构设计】四个方面梳理了一些真实案例&#xff0c;相信通过这些案例你能迅速get技能&#xff1a;如何写出让同事难以维护的代码doge。 比起什么程序员删库跑路&#xff0c;我更喜欢「写出让…

基于springboot+vue的电影评论网站(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

OPPO公布全新AI战略;苹果iPad新品细节曝光;周鸿祎称Sora工作原理像人做梦

OPPO 公布全新 AI 战略&#xff0c;AI 手机时代再提速 昨日&#xff0c;OPPO 举办 AI 战略发布会&#xff0c;分享新一代 AI 手机的四大能力特征&#xff1a; AI 手机首先要能够高效地利用计算资源&#xff0c;以满足 AI 时代下生成式 AI 的计算需要&#xff1b;AI 手机要能敏…

SwiftUI 集合视图(Grid)拖放交换 Cell 的极简实现

概览 自从 SwiftUI 横空出世那天起&#xff0c;小伙伴们都感受到了它惊人的简单与便捷。而在本课中&#xff0c;我们将会用一个小“栗子”更直观的让大家体验到它无与伦比简洁的描述性特质&#xff1a; 如上图所示&#xff0c;我们在 SwiftUI 中实现了 Grid 中拖放交换 Cell 的…

IIC通信驱动EEPROM,AT24C02硬件存储器编程(2)

接着上一篇博客文章讲解了IIC协议的原理及编程思路&#xff0c;本篇博客文章将以IIC为基础&#xff0c;从芯片手册入手&#xff0c;梳理讲解如何对AT24C02进行驱动编程&#xff0c;实现数据的读写操作。IIC通信驱动硬件编程 (1)-CSDN博客https://blog.csdn.net/weixin_49337111…

06 内存管理

目录 c/c内存分布c语言中动态内存管理方式c中动态内存管理方式operator new与operator delete函数new和delete的实现原理定位new表达式(placement-new)常见题 1. c/c内存分布 看一段代码 int globalVar 1; static int staticGlobalVar 1; void Test() {static int staticV…

FSQ: FINITE SCALAR QUANTIZATION: VQ-VAE MADE SIMPLE

Paper name FINITE SCALAR QUANTIZATION: VQ-VAE MADE SIMPLE Paper Reading Note Paper URL: https://arxiv.org/abs/2309.15505 Code URL: (官方 jax 实现) https://github.com/google-research/google-research/tree/master/fsq(pytorch 实现) https://github.com/luci…

教你用Appium搭建Android自动化测试框架(详细教程)

如题&#xff0c;本文附有仓库地址以及代码&#xff0c;目录如下&#xff1a; 1.下载安装appium 2.配置并使用appium 3.配置工程 一、下载安装appium 下载appium-desktop的mac版本&#xff0c;我选择用1.17.1版本&#xff0c;最新的版本1.22.0&#xff0c;拆分一个桌面应用…

2.22作业

作业要求&#xff1a; 程序代码&#xff1a; #include<myhead.h>int num 520; pthread_mutex_t mutex;void* task1(void* arg) {pthread_mutex_lock(&mutex);num 1314;sleep(3);printf("task1:num %d\n", num);pthread_mutex_unlock(&mutex); }voi…