KafKa3.x基础

来源:B站

目录

  • 定义
  • 消息队列
    • 传统消息队列的应用场景
    • 消息队列的两种模式
  • Kafka 基础架构
  • Kafka 命令行操作
    • 主题命令行操作
    • 生产者命令行操作
    • 消费者命令行操作
  • Kafka 生产者
    • 生产者消息发送流程
      • 发送原理
      • 生产者重要参数列表
    • 异步发送 API
      • 普通异步发送
      • 带回调函数的异步发送
    • 同步发送 API
    • 生产者分区
      • 分区好处
      • 生产者发送消息的分区策略

定义

Kafka传统定义:Kafka是一个分布式的基于发布/订阅模式的消息队列(MessageQueue),主要应用于大数据实时处理领域。
发布/订阅:消息的发布者不会将消息直接发送给特定的订阅者,而是将发布的消息分为不同的类别,订阅者只接收感兴趣的消息。
Kafka最 新定义 : Kafka是 一个开源的分布式事件流平台 (Event Streaming Platform),被数千家公司用于高性能数据管道、流分析、数据集成和关键任务应用。

消息队列

目 前企 业中比 较常 见的 消息 队列产 品主 要有 Kafka、ActiveMQ 、RabbitMQ 、RocketMQ 等。
在大数据场景主要采用 Kafka 作为消息队列。在 JavaEE 开发中主要采用 ActiveMQ、RabbitMQ、RocketMQ。

传统消息队列的应用场景

传统的消息队列的主要应用场景包括:缓存/消峰、解耦和异步通信

  • 缓冲/消峰:有助于控制和优化数据流经过系统的速度,解决生产消息和消费消息的处理速度不一致的情况
  • 解耦:允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束。
  • 异步通信:允许用户把一个消息放入队列,但并不立即处理它,然后在需要的时候再去处理它们。

消息队列的两种模式

  • 1)点对点模式
    • 消费者主动拉取数据,消息收到后清除消息
      在这里插入图片描述
  • 2)发布/订阅模式
    • 可以有多个topic主题(浏览、点赞、收藏、评论等)
    • 消费者消费数据之后,不删除数据
    • 每个消费者相互独立,都可以消费到数据

Kafka 基础架构

在这里插入图片描述
(1)Producer:消息生产者,就是向 Kafka broker 发消息的客户端。
(2)Consumer:消息消费者,向 Kafka broker 取消息的客户端。
(3)Consumer Group(CG):消费者组,由多个 consumer 组成。消费者组内每个消费者负责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
(4)Broker一台 Kafka 服务器就是一个 broker。一个集群由多个 broker 组成。一个broker 可以容纳多个 topic。
(5)Topic:可以理解为一个队列,生产者和消费者面向的都是一个 topic。
(6)Partition:为了实现扩展性,一个非常大的 topic 可以分布到多个 broker(即服务器)上,一个 topic 可以分为多个 partition,每个 partition 是一个有序的队列。
(7)Replica:副本。一个 topic 的每个分区都有若干个副本,一个 Leader 和若干个Follower
(8)Leader:每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对象都是 Leader。
(9)Follower:每个分区多个副本中的“从”,实时从 Leader 中同步数据,保持和Leader 数据的同步。Leader 发生故障时,某个 Follower 会成为新的 Leader。

Kafka 命令行操作

主题命令行操作

1)查看操作主题命令参数

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh
参数描述
–bootstrap-server <String: server toconnect to>连接的 Kafka Broker 主机名称和端口号。
–topic <String: topic>操作的 topic 名称。
–create创建主题。
–delete删除主题。
–alter修改主题。
–list查看所有主题。
–describe查看主题详细描述。
–partitions <Integer: # of partitions>设置分区数。
–replication-factor<Integer: replication factor>设置分区副本。
–config <String: name=value>更新系统默认的配置。

2)查看当前服务器中的所有 topic

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --list

3)创建 first topic

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --create --partitions 1 --replication-factor 3 --topic first

选项说明:
–topic 定义 topic 名
–replication-factor 定义副本数
–partitions 定义分区数
4)查看 first 主题的详情

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic first

5)修改分区数(注意:分区数只能增加,不能减少

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --alter --topic first --partitions 3

6)再次查看 first 主题的详情

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --describe --topic first

7)删除 topic

[jjm@hadoop102 kafka]$ bin/kafka-topics.sh --bootstrap-server 
hadoop102:9092 --delete --topic first

生产者命令行操作

1)查看操作生产者命令参数

[jjm@hadoop102 kafka]$ bin/kafka-console-producer.sh
参数描述
–bootstrap-server <String: server toconnect to>连接的 Kafka Broker 主机名称和端口号。
–topic <String: topic>操作的 topic 名称

2)发送消息

[jjm@hadoop102 kafka]$ bin/kafka-console-producer.sh --bootstrap-server hadoop102:9092 --topic first
>hello world
>hello kafka

消费者命令行操作

1)查看操作消费者命令参数

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh
参数描述
–bootstrap-server <String: server toconnect to>连接的 Kafka Broker 主机名称和端口号。
–topic <String: topic>操作的 topic 名称。
–from-beginning从头开始消费。
–group <String: consumer group id>指定消费者组名称。

2)消费消息
(1)消费 first 主题中的数据。

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

(2)把主题中所有的数据都读取出来(包括历史数据)。

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --from-beginning --topic first

Kafka 生产者

生产者消息发送流程

发送原理

在消息发送的过程中,涉及到了两个线程——main 线程和 Sender 线程。在 main 线程中创建了一个双端队列 RecordAccumulator。main 线程将消息发送给 RecordAccumulator,Sender 线程不断从 RecordAccumulator 中拉取消息发送到 Kafka Broker
在这里插入图片描述

生产者重要参数列表

参数名称描述
bootstrap.servers生产者连接集群所需的 broker 地 址 清 单 。 例 如hadoop102:9092,hadoop103:9092,hadoop104:9092,可以设置 1 个或者多个,中间用逗号隔开。注意这里并非需要所有的 broker 地址,因为生产者从给定的 broker里查找到其他 broker 信息。
key.serializer 和 value.serializer指定发送消息的 key 和 value 的序列化类型。一定要写全类名。
buffer.memory RecordAccumulator缓冲区总大小,默认 32m
batch.size缓冲区一批数据最大值,默认 16k。适当增加该值,可以提高吞吐量,但是如果该值设置太大,会导致数据传输延迟增加。
linger.ms如果数据迟迟未达到 batch.size,sender 等待 linger.time之后就会发送数据。单位 ms,默认值是 0ms,表示没有延迟生产环境建议该值大小为 5-100ms 之间。
acks0:生产者发送过来的数据,不需要等数据落盘应答。1:生产者发送过来的数据,Leader 收到数据后应答。-1(all):生产者发送过来的数据,Leader+和 isr 队列里面的所有节点收齐数据后应答。默认值是-1,-1 和all 是等价的。
max.in.flight.requests.per.connection允许最多没有返回 ack 的次数,默认为 5开启幂等性要保证该值是 1-5 的数字
retries当消息发送出现错误的时候,系统会重发消息。retries表示重试次数。默认是 int 最大值,2147483647。如果设置了重试,还想保证消息的有序性,需要设置MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION=1否则在重试此失败消息的时候,其他的消息可能发送成功了。
retry.backoff.ms两次重试之间的时间间隔,默认是 100ms
enable.idempotence是否开启幂等性,默认 true,开启幂等性。
compression.type生产者发送的所有数据的压缩方式。默认是 none,也就是不压缩。支持压缩类型:none、gzip、snappy、lz4 和 zstd

异步发送 API

普通异步发送

1)需求:创建 Kafka 生产者,采用异步的方式发送到 Kafka Broker
2)代码编写
(1)创建工程 kafka
(2)导入依赖

<dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.0.0</version></dependency>
</dependencies>

(3)创建包名:com.jjm.kafka.producer
(4)编写不带回调函数的 API 代码

package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
public class CustomProducer {public static void main(String[] args) throws InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息:bootstrap.serversproperties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializer properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");//或者可以使用下面这个,同理下面的value也是//properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName();properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {kafkaProducer.send(new ProducerRecord<>("first","jjm" + i));}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
jjm 0
jjm 1
jjm 2
jjm 3
jjm 4

带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是元数据信息(RecordMetadata)和异常信息(Exception),如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。
注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class CustomProducerCallback {public static void main(String[] args) throws InterruptedException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 5; i++) {// 添加回调kafkaProducer.send(new ProducerRecord<>("first", "jjm" + i), new Callback() {// 该方法在 Producer 收到 ack 时调用,为异步调用@Overridepublic void onCompletion(RecordMetadata metadata, Exception exception) {if (exception == null) {// 没有异常,输出信息到控制台System.out.println(" 主题: " + metadata.topic() + "->" + "分区:" + metadata.partition());} else {// 出现异常打印exception.printStackTrace();}}});// 延迟一会会看到数据发往不同分区Thread.sleep(2);}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

③在 IDEA 控制台观察回调信息。

主题:first->分区:0
主题:first->分区:0
主题:first->分区:1
主题:first->分区:1
主题:first->分区:1

同步发送 API

只需在异步发送的基础上,再调用一下 get()方法即可。

package com.jjm.kafka.producer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
public class CustomProducerSync {public static void main(String[] args) throws InterruptedException, ExecutionException {// 1. 创建 kafka 生产者的配置对象Properties properties = new Properties();// 2. 给 kafka 配置对象添加配置信息properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"hadoop102:9092");// key,value 序列化(必须):key.serializer,value.serializerproperties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());// 3. 创建 kafka 生产者对象KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);// 4. 调用 send 方法,发送消息for (int i = 0; i < 10; i++) {// 异步发送 默认// kafkaProducer.send(new ProducerRecord<>("first","kafka" + i));// 同步发送kafkaProducer.send(new ProducerRecord<>("first","kafka" + i)).get();}// 5. 关闭资源kafkaProducer.close();}
}

测试:
①在 hadoop102 上开启 Kafka 消费者。

[jjm@hadoop103 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first

②在 IDEA 中执行代码,观察 hadoop102 控制台中是否接收到消息。

[jjm@hadoop102 kafka]$ bin/kafka-console-consumer.sh --bootstrap-server hadoop102:9092 --topic first
atguigu 0
atguigu 1
atguigu 2
atguigu 3
atguigu 4

生产者分区

分区好处

(1)便于合理使用存储资源,每个Partition在一个Broker上存储,可以把海量的数据按照分区切割成一块一块数据存储在多台Broker上。合理控制分区的任务,可以实现负载均衡的效果。
(2)提高并行度,生产者可以以分区为单位发送数据;消费者可以以分区为单位进行消费数据。

生产者发送消息的分区策略

  • 1)默认的分区器 DefaultPartitioner
    在 IDEA 中 ctrl +n,全局查找 DefaultPartitioner。
    (1)指明partition的情况下,直接将指明的值作为partition值;例如partition=0,所有数据写入分区0。
    (2)没有指明partition值但有key的情况下,将key的hash值与topic的partition数进行取余得到partition值
    例如:key1的hash值=5, key2的hash值=6 ,topic的partition数=2,那么key1 对应的value1写入1号分区,key2对应的value2写入0号分区。
    (3)既没有partition值又没有key值的情况下,Kafka采用Sticky Partitio(黏性分区器),会随机选择一个分区,并尽可能一直使用该分区,待该分区的batch已满或者已完成,Kafka再随机一个分区进行使用(和上一次的分区不同)。
    例如:第一次随机选择0号分区,等0号分区当前批次满了(默认16k)或者linger.ms设置的时间到, Kafka再随机一个分区进行使用(如果还是0会继续随机)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485316.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微服务篇之分布式系统理论

一、CAP定理 1.什么是CAP 1998年&#xff0c;加州大学的计算机科学家 Eric Brewer 提出&#xff0c;分布式系统有三个指标&#xff1a; 1. Consistency&#xff08;一致性&#xff09;。 2. Availability&#xff08;可用性&#xff09;。 3. Partition tolerance &#xff0…

docker自定义网络实现容器之间的通信

Background docker原理 docker是一个Client-Server结构的系统&#xff0c;Docker的守护进程运行在主机上。通过Socket从客户端访问。docker核心三大组件&#xff1a;image–镜像、container-容器、 repository-仓库。docker使用的cpu、内存以及系统内核等资源都是直接使用宿主…

【开源】SpringBoot框架开发音乐平台

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示 四、核心代码4.1 查询单首音乐4.2 新增音乐4.3 新增音乐订单4.4 查询音乐订单4.5 新增音乐收藏 五、免责说明 一、摘要 1.1 项目介绍 基于微信小程序JAVAVueSpringBootMySQL的音乐平台&#xff0c;包含了音乐…

2024.2.19 阿里云Flink

一 、Flink基本介绍 Spark底层是微批处理 , Flink底层则是实时流计算 流式计算特点: 数据是源源不断产生,两大问题,乱序和延迟 Stateful:有状态 Flink的三个部分 Source:Transactions , logs ,iot ,clicks Transformation: 事件驱动 , ETL , 批处理 Sink : 输出 HDFS ,Kaf…

排序第三篇 直接插入排序

插入排序的基本思想是&#xff1a; 每次将一个待排序的记录按其关键字的大小插入到前面已排好序的文件中的适当位置&#xff0c; 直到全部记录插入完为止。 一 简介 插入排序可分为2类 本文介绍 直接插入排序 它的基本操作是&#xff1a; 假设待排充序的记录存储在数组 R[1……

vscode【报错】yarn : 无法将“yarn”项识别为 cmdlet

问题 CMD下载完yarn可以查看到yarn版本&#xff0c;但是进入到vscode控制台报错无法识别&#xff0c;报错内容如下&#xff1a; vscode【报错】yarn : 无法将“yarn”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写&#xff0c;如果包括路径&#xff…

ElementUI组件的安装和使用

Element UI 是一款基于 Vue 2.0 的桌面端组件库&#xff0c;主要用于快速构建网站的前端部分。它提供了丰富的组件&#xff0c;如按钮、输入框、表格、标签页等&#xff0c;以及一些布局元素&#xff0c;如布局容器、分割线等。Element UI 的设计风格简洁&#xff0c;易于上手&…

YOLOv9这么快就来了,赶紧学起来~

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

Stable Diffusion 模型的概念、类型、下载、安装、使用

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 大家好&#xff0c;我是水滴~~ 我们在《Stable Diffusion WebUI 界面介绍》 时&#xff0c;第一个就讲到了 Stable Diffusion 模型&#xff0c;那么这个模型是什么&#xff1f;该从哪儿下载&…

python + selenium/appnium

Selenium 的自动化原理: selenium 自动化流程: 自动化程序调用Selenium 客户端库函数&#xff08;比如点击按钮元素&#xff09;客户端库会发送Selenium 命令 给浏览器的驱动程序浏览器驱动程序接收到命令后 ,驱动浏览器去执行命令浏览器执行命令浏览器驱动程序获取命令执行的…

#LLM入门|Prompt#1.7_文本拓展_Expanding

输入简短文本&#xff0c;生成更加丰富的长文。 “温度”&#xff08;temperature&#xff09;&#xff1a;控制文本生成的多样性。 一、定制客户邮件 根据客户的评价和其中的情感倾向&#xff0c;使用大语言模型针对性地生成回复邮件。将大大提升客户满意度。 # 我们可以在…

【算法与数据结构】417、LeetCode太平洋大西洋水流问题

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引&#xff0c;可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析&#xff1a;题目要求雨水既能流向太平洋也能流向大西洋的网格。雨水流向取决于网格的高度。一个比较直接的方式是对…