Elasticsearch从入门到精通-01认识Elasticsearch

Elasticsearch从入门到精通-01认识Elasticsearch

👏作者简介:大家好,我是程序员行走的鱼

🍂博主从本篇正式开始ES学习,希望小伙伴可以一起探讨

📖 本篇主要介绍和大家一块简单认识下ES并了解ES中的主要角色

ElasticSearch概述

1.1 认识Elasticsearch

image-20221129204022545

​ The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索分析可视化。Elaticsearch简称为 ES,ES 是一个**开源的高扩展的分布式全文搜索引擎,是整个 Elastic Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。

1.2 什么是全文搜索引擎

​ Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日志的搜索等等。对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进行全文检索需要扫描整个表,如果数据量大的话即使对 SQL 的语法优化,也收效甚微。即使建立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差的:

  • 搜索的数据对象是大量的非结构化的文本数据。
  • 文本记录量达到数十万或数百万个甚至更多。
  • 需要支持大量基于交互式文本的查询。
  • 需要非常灵活的全文搜索查询。
  • 对高度相关的搜索结果的有特殊需求,但是没有可用的关系数据库可以满足。
  • 对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全文搜索引擎

​ 这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。

1.3 Elasticsearch And Solr

​ Lucene 是 Apache 软件基金会 Jakarta 项目组的一个子项目,提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在 Java 开发环境里 Lucene 是一个成熟的免费开源工具。就其本身而言,Lucene 是当前以及最近几年最受欢迎的免费 Java 信息检索程序库。但 Lucene 只是一个提供全文搜索功能类库的核心工具包,而真正使用它还需要一个完善的服务框架搭建起来进行应用。

​ 目前市面上流行的搜索引擎软件,主流的就两款:ElasticsearchSolr,这两款都是基于 Lucene 搭建的,可以独立部署启动的搜索引擎服务软件。由于内核相同,所以两者除了服务器安装、部署、管理、集群以外,对于数据的操作修改、添加、保存、查询等等都十分类似。

​ 在使用过程中,一般都会将 Elasticsearch 和 Solr 这两个软件对比,然后进行选型。这两个搜索引擎都是流行的,先进的的开源搜索引擎。它们都是围绕核心底层搜索库 - Lucene构建的 - 但它们又是不同的。像所有东西一样,每个都有其优点和缺点:

image-20221129205041102

当单纯的对已有数据进行搜索时,Solr更快。当实时建立索引时, Solr会产生io阻塞,查询性能较差, Elasticsearch具有明显的优势。大型互联网公司,实际生产环境测试,将搜索引擎从Solr转到 Elasticsearch以后的平均查询速度有了50倍的提升。

1.4 Elasticsearch Or Solr

​ Elasticsearch 和 Solr 都是开源搜索引擎,那么我们在使用时该如何选择呢?

  • Google 搜索趋势结果表明,与 Solr 相比,Elasticsearch 具有很大的吸引力,但这并不意味着 Apache Solr 已经死亡。虽然有些人可能不这么认为,但 Solr 仍然是最受欢迎的搜索引擎之一,拥有强大的社区和开源支持。

  • 与 Solr 相比,Elasticsearch 易于安装且非常轻巧。此外,你可以在几分钟内安装并运行Elasticsearch。但是,如果 Elasticsearch 管理不当,这种易于部署和使用可能会成为一个问题。基于 JSON 的配置很简单,但如果要为文件中的每个配置指定注释,那么它不适合您。总的来说,如果你的应用使用的是 JSON,那么 Elasticsearch 是一个更好的选择。否则,请使用 Solr,因为它的 schema.xml 和 solrconfig.xml 都有很好的文档记录。

  • Solr 拥有更大,更成熟的用户,开发者和贡献者社区。ES 虽拥有的规模较小但活跃的用户社区以及不断增长的贡献者社区。

    Solr 贡献者和提交者来自许多不同的组织,而 Elasticsearch 提交者来自单个公司。

  • Solr 更成熟,但 ES 增长迅速,更稳定。

  • Solr 是一个非常有据可查的产品,具有清晰的示例和 API 用例场景。 Elasticsearch的文档组织良好,但它缺乏好的示例和清晰的配置说明。

  • Solr 支持更多格式的数据,比如JSON、XML、CSV,而 Elasticsearch 仅支持json文件格式。

  • Solr 在传统的搜索应用中表现好于 Elasticsearch,但在处理实时搜索应用时效率明显低于 Elasticsearch。

那么,到底是Solr还是Elasticsearch?

​ 有时很难找到明确的答案。无论您选择 Solr 还是 Elasticsearch,首先需要了解正确的用例和未来需求。总结他们的每个属性。

  • 由于易于使用,Elasticsearch 在新开发者中更受欢迎。一个下载和一个命令就可以启动一切。
  • 如果除了搜索文本之外还需要它来处理分析查询,Elasticsearch 是更好的选择
  • 如果需要分布式索引,则需要选择 Elasticsearch。对于需要良好可伸缩性和以及性能分布式环境,Elasticsearch 是更好的选择。
  • Elasticsearch 在开源日志管理用例中占据主导地位,许多组织在 Elasticsearch 中索引它们的日志以使其可搜索。
  • 如果你喜欢监控和指标,那么请使用 Elasticsearch,因为相对于 Solr,Elasticsearch 暴露了更多的关键指标

1.5 Elasticsearch应用案例

  • GitHub:2013 年初,抛弃了 Solr,采取 Elasticsearch 来做 PB 级的搜索。“GitHub使用Elasticsearch 搜索 20TB 的数据,包括13亿文件和1300亿行代码""。
  • 维基百科:启动以 Elasticsearch 为基础的核心搜索架构
  • SoundCloud:“SoundCloud 使用 Elasticsearch 为 1.8 亿用户提供即时而精准的音乐搜索服务”。
  • 百度:目前广泛使用 Elasticsearch 作为文本数据分析,采集百度所有服务器上的各类指标数据及用户自定义数据,通过对各种数据进行多维分析展示,辅助定位分析实例异常或业务层面异常。目前覆盖百度内部 20 多个业务线(包括云分析、网盟、预测、文库、直达号、钱包、风控等),单集群最大 100 台机器,200 个 ES 节点,每天导入 30TB+数据。
  • 新浪:使用 Elasticsearch 分析处理 32 亿条实时日志。
  • 阿里:使用 Elasticsearch 构建日志采集和分析体系。
  • Stack Overflow:解决 Bug 问题的网站,全英文,编程人员交流的网站。

ElasticSearch基本概念

2.1索引(Index)

​ 一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。

​ 能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录就是索引的意思,目录可以提高查询速度。

Elasticsearch 索引的精髓:一切设计都是为了提高搜索的性能。

2.2 类型(Type)

​ 在一个索引中,你可以定义一种或多种类型。

​ 一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常,会为具有一组共同字段的文档定义一个类型。不同的版本,类型发生了不同的变化

image-20221201223315453

2.3 文档(Document)

​ 一个文档是一个可被索引的基础信息单元,也就是一条数据.

​ 比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以JSON格式来表示,而 JSON 是一个到处存在的互联网数据交互格式。

​ 在一个 index/type 里面,你可以存储任意多的文档。

2.4 字段(Field)

​ 相当于是数据表的字段,对文档数据根据不同属性进行的分类标识。

2.5 映射(Mapping)

​ mapping 是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。

2.6 分片(Shards)

​ 一个索引可以存储超出单个节点硬件限制的大量数据。比如,一个具有 10 亿文档数据的索引占据 1TB 的磁盘空间,而任一节点都可能没有这样大的磁盘空间。或者单个节点处理搜索请求,响应太慢。为了解决这个问题,Elasticsearch 提供了将索引划分成多份的能力,每一份就称之为分片。当你创建一个索引的时候,你可以指定你想要的分片的数量。每个分片本身也是一个功能完善并且独立的“索引”,这个“索引”可以被放置到集群中的任何节点上。

​ 分片很重要,主要有两方面的原因:

​ (1)允许你水平分割 / 扩展你的内容容量。

​ (2)允许你在分片之上进行分布式的、并行的操作,进而提高性能/吞吐量。

​ 至于一个分片怎样分布,它的文档怎样聚合和搜索请求,是完全由 Elasticsearch 管理的,对于作为用户的你来说,这些都是透明的,无需过分关心。

被混淆的概念是,一个 Lucene 索引我们在 Elasticsearch称作分片 。 一个Elasticsearch 索引是分片的集合。 当 Elasticsearch 在索引中搜索的时候, 他发送查询到每一个属于索引的分片(Lucene 索引),然后合并每个分片的结果到一个全局的结果集。

2.7副本(Replicas)

​ 在一个网络 / 云的环境里,失败随时都可能发生,在某个分片/节点不知怎么的就处于离线状态,或者由于任何原因消失了,这种情况下,有一个故障转移机制是非常有用并且是强烈推荐的。为此目的,Elasticsearch允许你创建分片的一份或多份拷贝,这些拷贝叫做复制分片(副本)。

​ 复制分片之所以重要,有两个主要原因:

​ (1)在分片/节点失败的情况下,提供了高可用性。因为这个原因,注意到复制分片从不与原/主要(original/primary)分片置于同一节点上是非常重要的。

​ (2)扩展你的搜索量/吞吐量,因为搜索可以在所有的副本上并行运行。

​ 总之,每个索引可以被分成多个分片。一个索引也可以被复制 0 次(意思是没有复制)或多次。一旦复制了,每个索引就有了主分片(作为复制源的原来的分片)和复制分片(主分片的拷贝)之别。分片和复制的数量可以在索引创建的时候指定。在索引创建之后,你可以在任何时候动态地改变复制的数量,但是你事后不能改变分片的数量。默认情况下,Elasticsearch中的每个索引被分片 1 个主分片和 1 个复制分配,这意味着,如果你的集群中至少有两个节点,你的索引将会有 1 个主分片和另外 1 个复制分片(1 个完全拷贝),这样的话每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。

2.8分配

​ 将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。

主分片和另外 1 个复制分片(1 个完全拷贝),这样的话每个索引总共就有 2 个分片,我们需要根据索引需要确定分片个数。

2.8分配

​ 将分片分配给某个节点的过程,包括分配主分片或者副本。如果是副本,还包含从主分片复制数据的过程。这个过程是由 master 节点完成的。

🌟至此本篇就结束了,下一篇将介绍ES环境搭建以及客户端的安装,包括Linux和Docker两种轻松搭建一个属于自己的ES服务

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/485416.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL 窗口函数温故知新

本文用于复习数据库窗口函数,希望能够温故知新,也希望读到这篇文章的有所收获。 本文以:MySQL为例 参考文档: https://www.begtut.com/mysql/mysql-window-functions.html 使用的样例数据:https://www.begtut.com/m…

vue3新特性-defineOptions和defineModel

defineOptions 背景说明&#xff1a; 有 <script setup> 之前&#xff0c;如果要定义 props, emits 可以轻而易举地添加一个与 setup 平级的属性。 但是用了 <script setup> 后&#xff0c;就没法这么干了 setup 属性已经没有了&#xff0c;自然无法添加与其平…

R语言【base】——abs(),sqrt():杂项数学函数

Package base version 4.2.0 Description abs(x) 计算 x 的绝对值&#xff0c;sqrt(x) 计算 x 的正平方根。 Usage abs(x) sqrt(x) Arguments 参数【x】&#xff1a;一个数值或复数向量或数组。 Details 这些都是内部泛型原语函数:可以为它们单独定义方法&#xff0c;也可以…

IDEA启动Springboot报错:无效的目标发行版:17 的解决办法

无效的目标发行版&#xff1a;17 的解决办法 一般有两个原因&#xff0c;一可能是本地没有安装JDK17&#xff0c;需要安装后然后在IDEA中选择对应版本&#xff1b;二可能是因为IDEA版本太低&#xff0c;不支持17&#xff0c;需要升级IDEA版本。然后在File->Project Struct…

【Java EE初阶二十】http的简单理解(一)

1. 初识http HTTP 最新的版本应该是 HTTP/3.0&#xff0c;目前大规模使用的版本 HTTP/1.1&#xff1b; 下面来简单说明一下使用 HTTP 协议的场景: 1、浏览器打开网站 (基本上) 2、手机 APP 访问对应的服务器 (大概率) 前面的 TCP与UDP 和http不同&#xff0c;HTTP 的报文格式&a…

Mybatis Plus 打印 SQL 语句(包含执行耗时)

文章目录 一、前言二、引入依赖三、添加配置3.1 第一步&#xff1a;修改 application.yml 配置文件3.2 第二步&#xff1a;添加 p6spy 配置文件 四、看看打印效果五、注意点 一、前言 我们先配置一下 Mybatis Plus 打印 SQL 功能&#xff08;包括执行耗时&#xff09;&#xf…

vue : 无法加载文件 C:\Program Files\nodejs\node_global\vue.ps1,因为在此系统上禁止运行脚本。

解决方法&#xff1a; 打开PowerShell&#xff0c;在命令框输入set-ExecutionPolicy RemoteSigned 在PowerShell中输入会出现如下图&#xff0c;输入y即可。

vue源码分析之nextTick源码分析-逐行逐析-错误分析

nextTick的使用背景 在vue项目中&#xff0c;经常会使用到nextTick这个api&#xff0c;一直在猜想其是怎么实现的&#xff0c;今天有幸研读了下&#xff0c;虽然源码又些许问题&#xff0c;但仍值得借鉴 核心源码解析 判断当前环境使用最合适的API并保存函数 promise 判断…

[linux]进程间通信(IPC)———共享内存(shm)(什么是共享内存,共享内存的原理图,共享内存的接口,使用演示)

一、什么是共享内存 共享内存区是最快的&#xff08;进程间通信&#xff09;IPC形式。一旦这样的内存映射到共享它的进程的地址空间&#xff0c;这些进程间数据传递不再涉及到内核&#xff0c;换句话说是进程不再通过执行进入内核的系统调用来传递彼此的数据。注意&#xff1a;…

Seata 的 AT 模式

目录 概述 Springcloud 整合 Seata 数据库脚本 服务依赖 Springboot 配置 代码改造 AT模式下的数据隔离 写隔离 读隔离 概述 Seata 的 AT 模式是 Seata 的默认模式&#xff0c;它的原理是依赖于数据库事务&#xff0c;以数据库事务保证本地事务分支特性&#xff0c;结合…

数据库管理-第153期 Oracle Vector DB AI-05(20240221)

数据库管理153期 2024-02-21 数据库管理-第153期 Oracle Vector DB & AI-05&#xff08;20240221&#xff09;1 Oracle Vector的其他特性示例1&#xff1a;示例2 2 简单使用Oracle Vector环境创建包含Vector数据类型的表插入向量数据 总结 数据库管理-第153期 Oracle Vecto…

navicat导出数据库表结构信息

需求阐述 要求导出某一数据库表中的所有表的结构&#xff0c;汇总成一个word 准备工作 拿到所有表名&#xff0c;在navicat中执行sql语句&#xff1a;show tables;然后点击导出结果&#xff0c;选择excel格式进行导出。 拿到该数据库所有表名后&#xff0c;在navicat中执行如…