【深度学习笔记】卷积神经网络——填充和步幅

填充和步幅

在前面的例子 fig_correlation中,输入的高度和宽度都为 3 3 3,卷积核的高度和宽度都为 2 2 2,生成的输出表征的维数为 2 × 2 2\times2 2×2
正如我们在 sec_conv_layer中所概括的那样,假设输入形状为 n h × n w n_h\times n_w nh×nw,卷积核形状为 k h × k w k_h\times k_w kh×kw,那么输出形状将是 ( n h − k h + 1 ) × ( n w − k w + 1 ) (n_h-k_h+1) \times (n_w-k_w+1) (nhkh+1)×(nwkw+1)
因此,卷积的输出形状取决于输入形状和卷积核的形状。

还有什么因素会影响输出的大小呢?本节我们将介绍填充(padding)和步幅(stride)。假设以下情景:
有时,在应用了连续的卷积之后,我们最终得到的输出远小于输入大小。这是由于卷积核的宽度和高度通常大于 1 1 1所导致的。比如,一个 240 × 240 240 \times 240 240×240像素的图像,经过 10 10 10 5 × 5 5 \times 5 5×5的卷积后,将减少到 200 × 200 200 \times 200 200×200像素。如此一来,原始图像的边界丢失了许多有用信息。而填充是解决此问题最有效的方法;
有时,我们可能希望大幅降低图像的宽度和高度。例如,如果我们发现原始的输入分辨率十分冗余。步幅则可以在这类情况下提供帮助。

填充

如上所述,在应用多层卷积时,我们常常丢失边缘像素。
由于我们通常使用小卷积核,因此对于任何单个卷积,我们可能只会丢失几个像素。
但随着我们应用许多连续卷积层,累积丢失的像素数就多了。
解决这个问题的简单方法即为填充(padding):在输入图像的边界填充元素(通常填充元素是 0 0 0)。
例如,在 img_conv_pad中,我们将 3 × 3 3 \times 3 3×3输入填充到 5 × 5 5 \times 5 5×5,那么它的输出就增加为 4 × 4 4 \times 4 4×4。阴影部分是第一个输出元素以及用于输出计算的输入和核张量元素:
0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 0\times0+0\times1+0\times2+0\times3=0 0×0+0×1+0×2+0×3=0

在这里插入图片描述

通常,如果我们添加 p h p_h ph行填充(大约一半在顶部,一半在底部)和 p w p_w pw列填充(左侧大约一半,右侧一半),则输出形状将为

( n h − k h + p h + 1 ) × ( n w − k w + p w + 1 ) 。 (n_h-k_h+p_h+1)\times(n_w-k_w+p_w+1)。 (nhkh+ph+1)×(nwkw+pw+1)

这意味着输出的高度和宽度将分别增加 p h p_h ph p w p_w pw

在许多情况下,我们需要设置 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1,使输入和输出具有相同的高度和宽度。
这样可以在构建网络时更容易地预测每个图层的输出形状。假设 k h k_h kh是奇数,我们将在高度的两侧填充 p h / 2 p_h/2 ph/2行。
如果 k h k_h kh是偶数,则一种可能性是在输入顶部填充 ⌈ p h / 2 ⌉ \lceil p_h/2\rceil ph/2行,在底部填充 ⌊ p h / 2 ⌋ \lfloor p_h/2\rfloor ph/2行。同理,我们填充宽度的两侧。

卷积神经网络中卷积核的高度和宽度通常为奇数,例如1、3、5或7。
选择奇数的好处是,保持空间维度的同时,我们可以在顶部和底部填充相同数量的行,在左侧和右侧填充相同数量的列。

此外,使用奇数的核大小和填充大小也提供了书写上的便利。对于任何二维张量X,当满足:

  1. 卷积核的大小是奇数;
  2. 所有边的填充行数和列数相同;
  3. 输出与输入具有相同高度和宽度
    则可以得出:输出Y[i, j]是通过以输入X[i, j]为中心,与卷积核进行互相关计算得到的。

比如,在下面的例子中,我们创建一个高度和宽度为3的二维卷积层,并(在所有侧边填充1个像素)。给定高度和宽度为8的输入,则输出的高度和宽度也是8。

import torch
from torch import nn# 为了方便起见,我们定义了一个计算卷积层的函数。
# 此函数初始化卷积层权重,并对输入和输出提高和缩减相应的维数
def comp_conv2d(conv2d, X):# 这里的(1,1)表示批量大小和通道数都是1X = X.reshape((1, 1) + X.shape)Y = conv2d(X)# 省略前两个维度:批量大小和通道return Y.reshape(Y.shape[2:])# 请注意,这里每边都填充了1行或1列,因此总共添加了2行或2列
conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
torch.Size([8, 8])

当卷积核的高度和宽度不同时,我们可以[填充不同的高度和宽度],使输出和输入具有相同的高度和宽度。在如下示例中,我们使用高度为5,宽度为3的卷积核,高度和宽度两边的填充分别为2和1。

conv2d = nn.Conv2d(1, 1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
torch.Size([8, 8])

步幅

在计算互相关时,卷积窗口从输入张量的左上角开始,向下、向右滑动。
在前面的例子中,我们默认每次滑动一个元素。
但是,有时候为了高效计算或是缩减采样次数,卷积窗口可以跳过中间位置,每次滑动多个元素。

我们将每次滑动元素的数量称为步幅(stride)。到目前为止,我们只使用过高度或宽度为 1 1 1的步幅,那么如何使用较大的步幅呢?
:numref:img_conv_stride是垂直步幅为 3 3 3,水平步幅为 2 2 2的二维互相关运算。
着色部分是输出元素以及用于输出计算的输入和内核张量元素: 0 × 0 + 0 × 1 + 1 × 2 + 2 × 3 = 8 0\times0+0\times1+1\times2+2\times3=8 0×0+0×1+1×2+2×3=8 0 × 0 + 6 × 1 + 0 × 2 + 0 × 3 = 6 0\times0+6\times1+0\times2+0\times3=6 0×0+6×1+0×2+0×3=6

可以看到,为了计算输出中第一列的第二个元素和第一行的第二个元素,卷积窗口分别向下滑动三行和向右滑动两列。但是,当卷积窗口继续向右滑动两列时,没有输出,因为输入元素无法填充窗口(除非我们添加另一列填充)。

在这里插入图片描述

通常,当垂直步幅为 s h s_h sh、水平步幅为 s w s_w sw时,输出形状为

⌊ ( n h − k h + p h + s h ) / s h ⌋ × ⌊ ( n w − k w + p w + s w ) / s w ⌋ . \lfloor(n_h-k_h+p_h+s_h)/s_h\rfloor \times \lfloor(n_w-k_w+p_w+s_w)/s_w\rfloor. ⌊(nhkh+ph+sh)/sh×⌊(nwkw+pw+sw)/sw.

如果我们设置了 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1,则输出形状将简化为 ⌊ ( n h + s h − 1 ) / s h ⌋ × ⌊ ( n w + s w − 1 ) / s w ⌋ \lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor ⌊(nh+sh1)/sh×⌊(nw+sw1)/sw
更进一步,如果输入的高度和宽度可以被垂直和水平步幅整除,则输出形状将为 ( n h / s h ) × ( n w / s w ) (n_h/s_h) \times (n_w/s_w) (nh/sh)×(nw/sw)

下面,我们[将高度和宽度的步幅设置为2],从而将输入的高度和宽度减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
torch.Size([4, 4])

接下来,看(一个稍微复杂的例子)。

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
torch.Size([2, 2])

为了简洁起见,当输入高度和宽度两侧的填充数量分别为 p h p_h ph p w p_w pw时,我们称之为填充 ( p h , p w ) (p_h, p_w) (ph,pw)。当 p h = p w = p p_h = p_w = p ph=pw=p时,填充是 p p p。同理,当高度和宽度上的步幅分别为 s h s_h sh s w s_w sw时,我们称之为步幅 ( s h , s w ) (s_h, s_w) (sh,sw)。特别地,当 s h = s w = s s_h = s_w = s sh=sw=s时,我们称步幅为 s s s。默认情况下,填充为0,步幅为1。在实践中,我们很少使用不一致的步幅或填充,也就是说,我们通常有 p h = p w p_h = p_w ph=pw s h = s w s_h = s_w sh=sw

小结

  • 填充可以增加输出的高度和宽度。这常用来使输出与输入具有相同的高和宽。
  • 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的 1 / n 1/n 1/n n n n是一个大于 1 1 1的整数)。
  • 填充和步幅可用于有效地调整数据的维度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/487738.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux前端部署

安装jdk 配置环境变量 刷新配置文件 source profile source /etc/profile tomcat 解压文件 进去文件启动tomcat 开放tomcat的端口号 访问 curl localhsot:8080 改配置文件 改IP,改数据库名字,密码, 安装数据库 将war包拖进去 访问http:…

伪装成简历的攻击样本,HR小伙伴注意啦

样本简介 样本伪装成个人求职简历进行钓鱼攻击,名称为简历.docm,如下所示: 打开简历样本之后,提示包含宏代码,如下所示: 查看简历内容,发现竟然还是伪造的一份安全研究人员的简历,而…

前端学习——vue学习

文章目录 1. < el-form> 属性 model、prop、rules2. v-bind 与 v-model3. v-if 与 v-show4. v-for 循环语句5. 计算属性 computed6. 监视属性 watch7. 下拉框 el-select、el-option8. 自定义事件9. async与await实现异步调用 1. < el-form> 属性 model、prop、rule…

如何通过沉浸式翻译插件来高效阅读英文技术网站、英文文献

对于英语非母语的同学来说&#xff0c;阅读英文文档、英文技术博客、社区时经常会需要查询字典&#xff0c;打断了常规的阅读&#xff0c;效率极低&#xff0c;这时可以借助一款AI翻译插件&#xff08;沉浸式翻译&#xff0c;支持GPT翻译、谷歌翻译、百度翻译、有道翻译等&…

33.云原生之Istio管理任何七层流量

云原生专栏大纲 文章目录 Istio存在的问题Aeraki介绍Aeraki 的解决方案支持的协议支持的特性 安装AerakiAeraki教程采用 ServiceEntry 的 Demo 应用使用 Dubbo2Istio 对接 Dubbo 注册表 的 Demo 应用&#xff08;Interface 级流量治理&#xff09; Service Mesh 中有大量的七层…

【深度学习】SSD 神经网络:彻底改变目标检测

一、说明 Single Shot MultiBox Detector &#xff08;SSD&#xff09; 是一项关键创新&#xff0c;尤其是在物体检测领域。在 SSD 出现之前&#xff0c;对象检测主要通过两阶段过程执行&#xff0c;首先识别感兴趣的区域&#xff0c;然后将这些区域分类为对象类别。这种方法虽…

面试经典150题——快乐数

​"Success is not final, failure is not fatal: It is the courage to continue that counts." - Winston Churchill 1. 题目描述 2. 题目分析与解析 2.1 思路一 还是最简单的&#xff0c;模拟最直观的思路&#xff0c;就是进行一个while循环。比如&#xff1a;…

Oracle迁移到mysql-导出mysql所有索引和主键

导出建库表索引等&#xff1a; [rootlnpg ~]# mysqldump -ugistar -pxxx -h192.168.207.143 --no-data -d lndb > lndb20230223-1.sql 只导出索引&#xff1a;参考&#xff1a;MYSQL导出现有库中的索引脚本_mysql 导出数据库所有表的主键和索引-CSDN博客 -- MYSQL导出现有…

精品基于SpringBoot+Vue的常规应急物资管理系统

《[含文档PPT源码等]精品基于SpringBootVue的常规应急物资管理系统[包运行成功]》该项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、包运行成功&#xff01; 软件开发环境及开发工具&#xff1a; Java——涉及技术&#xff1a; 前端使用技术&#xff…

京东数据分析|京东销售数据怎么查|京东销售数据查询软件分享!

京东销售数据分析对商家来说具有多方面的重要作用&#xff0c;主要体现在以下几个方面&#xff1a; 市场趋势分析&#xff1a; 分析京东平台上的商品销量、销售额和价格走势等数据&#xff0c;可以帮助商家了解当前市场的整体需求趋势&#xff0c;以及不同品类的季节性变化、…

计算机组成原理(12)----多处理系统

目录 1.SISD&#xff08;单指令流单数据流&#xff09; &#xff08;1&#xff09;特性 &#xff08;2&#xff09;硬件组成 2.SIMD&#xff08;单指令流多数据流&#xff09; &#xff08;1&#xff09;特性 &#xff08;2&#xff09;硬件组成 3.MISD&#xff08;多指…

自定义Chrome的浏览器开发者工具DevTools界面的字体和样式

Chrome浏览器开发者工具默认的字体太小&#xff0c;想要修改但没有相关设置。 外观——字体可以自定义字体&#xff0c;但大小不可以调整。 github上有人给出了方法 整理为中文教程&#xff1a; 1.打开浏览器开发者工具&#xff0c;点开设置——实验&#xff0c;勾上红框设…