深度学习基础(二)卷积神经网络(CNN)

之前的章节我们初步介绍了深度学习相关基础知识和训练神经网络:

深度学习基础(一)神经网络基本原理-CSDN博客文章浏览阅读924次,点赞13次,收藏19次。在如今的科技浪潮中,神经网络作为人工智能的核心技术之一,正日益展现出其强大的能力。从图像识别、语音识别到自然语言处理,神经网络的应用几乎遍布每一个角落。而其背后的原理,源自于对人类大脑极其复杂处理机制的模拟与借鉴。本文将深入浅出地探讨神经网络的基础原理,让我们一起揭开这项神奇技术的面纱。https://blog.csdn.net/qq_52213943/article/details/136235053?spm=1001.2014.3001.5501本节开始我们将进行卷积神经网络(CNN)的应用介绍讲解

目录

卷积神经网络(CNN)

CNN基础

CNN工作原理

核心组件介绍

代码示例:构建一个基础的CNN模型

CNN架构与图像处理

经典CNN模型

CNN在图像处理中的应用

代码示例:使用预训练的ResNet进行图像分类

典型案例与性能分析

案例分析:ImageNet挑战

案例分析:使用YOLO进行实时物体检测

案例分析:医学图像分割

CNN的优化和挑战

训练技巧和策略

面临的挑战和问题

使用数据增强和正则化减少过拟合


卷积神经网络(CNN)

图源:DALL·E 

        卷积神经网络(CNN)的应用领域广泛,尤其在图像处理方面,CNN已经成为了一种革命性的工具。本章将深入探讨CNN的架构、典型应用案例以及性能分析,旨在为读者提供一个全面的视角,理解CNN在图像处理中的核心作用及其背后的原理。

        CNN是一种深度学习算法,它通过模仿人类视觉系统的工作原理,使计算机能够从图片中识别模式,如边缘、颜色和形状等。这种网络结构包括多个层,每一层都会对输入的图像执行不同的数学运算,逐步提取出越来越复杂的特征。这一过程不仅增强了网络对图像中各种变化的鲁棒性,也极大地提高了处理速度和效率。

        在图像处理领域,CNN的应用几乎无所不包,从图像分类、物体检测到图像分割,乃至于最近的图像生成等,CNN都展现出了卓越的性能。例如,在图像分类任务中,CNN能够识别出图片中的主要对象;在物体检测任务中,它不仅能识别出物体,还能准确标出物体的位置;而在图像分割任务中,CNN则能够将图像中的每个像素分类到不同的对象类别中。

CNN基础

CNN工作原理

卷积神经网络(CNN)是一种深度学习模型,主要用于处理具有类似网格结构的数据,如图像。CNN通过使用卷积层自动学习空间层次的特征,无需手动特征提取。卷积层内的卷积操作帮助模型学习图像中的小部分,然后将这些局部特征组合成更高级的形式,以实现复杂任务的学习。

核心组件介绍
  • 卷积层:使用一组可学习的滤波器来扫描输入数据,每个滤波器负责提取一种特定的特征。
  • 激活函数:引入非线性,使网络能够学习复杂的模式,常用的激活函数有ReLU。
  • 池化层:降低特征图的空间维度,减少计算量和参数数量,防止过拟合。
  • 全连接层:将前面卷积层和池化层提取到的特征图转换为一维特征向量,进行最终的分类或回归分析。
代码示例:构建一个基础的CNN模型
import tensorflow as tf
from tensorflow.keras import layers, modelsmodel = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))model.summary()

CNN架构与图像处理

经典CNN模型
  • LeNet:早期的CNN模型之一,主要用于手写数字识别。
  • AlexNet:在ImageNet挑战赛中取得突破性成绩的模型,开启了深度学习在图像识别领域的应用。
  • VGGNet:通过重复使用简单的卷积层和池化层结构,展示了网络深度对性能的重要性。
  • ResNet:引入残差学习的概念来构建更深的网络,有效解决了深度网络中的梯度消失问题。
CNN在图像处理中的应用
  • 图像分类:通过学习图像的特征表示,将图像分配给预定义的类别。
  • 物体检测:不仅识别图像中的对象,还确定它们的位置和大小。
  • 图像分割:将图像分割成多个部分,每一部分代表一个对象或图像的一部分。
代码示例:使用预训练的ResNet进行图像分类
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input, decode_predictions
from tensorflow.keras.preprocessing import image
import numpy as np# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')# 加载并预处理一张图片
img_path = 'path_to_image.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)# 进行预测
preds = model.predict(x)
# 解码预测结果
print('Predicted:', decode_predictions(preds, top=3)[0])

典型案例与性能分析

案例分析:ImageNet挑战

        ImageNet Large Scale Visual Recognition Challenge (ILSVRC)是一个年度竞赛,其中参赛模型需要在数百万张图像和千个类别上进行分类。自AlexNet以来,CNN在这一挑战中表现出色,推动了图像分类技术的发展。

代码示例:图像分类任务

# 假设已经有一个训练好的CNN模型
def classify_image(model, image_path):img = image.load_img(image_path, target_size=(224, 224))img_array = image.img_to_array(img)img_array = np.expand_dims(img_array, axis=0)img_array = preprocess_input(img_array)predictions = model.predict(img_array)return decode_predictions(predictions, top=1)[0]
案例分析:使用YOLO进行实时物体检测

        YOLO(You Only Look Once)是一种流行的物体检测算法,以其高速和准确性而闻名。它将物体检测任务视为单一的回归问题,直接从图像像素到边界框坐标和类别概率的映射。

案例分析:医学图像分割

        在医学图像分析中,图像分割技术用于从复杂的医学图像中提取有用的结构信息,如分割器官、肿瘤等。U-Net是在这一领域广泛使用的网络架构之一。

CNN的优化和挑战

训练技巧和策略

在CNN的训练过程中,存在多种技巧和策略来提高性能和效率,包括数据增强、权重初始化、批量归一化、使用不同的优化器等。

面临的挑战和问题
  • 过拟合:深度CNN模型由于其高容量易于过拟合。解决方法包括正则化、dropout、数据增强等。
  • 计算资源需求:训练深层CNN模型需要大量的计算资源,特别是在处理大规模数据集时。
使用数据增强和正则化减少过拟合
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.regularizers import l2# 数据增强
datagen = ImageDataGenerator(rotation_range=20,width_shift_range=0.2,height_shift_range=0.2,horizontal_flip=True)# 在模型定义中添加正则化
model.add(layers.Conv2D(32, (3, 3), activation='relu', kernel_regularizer=l2(0.01)))

        卷积神经网络(CNN)在图像处理领域的应用标志着深度学习技术的一大飞跃,使得机器能够像人类一样识别和理解图像。通过模拟人类视觉系统的工作原理,CNN能够从简单的边缘和纹理特征到复杂的物体和场景特征中自动学习有用的表示。经典模型如LeNet、AlexNet、VGGNet和ResNet在图像分类、物体检测和图像分割等任务上取得了显著成果,推动了相关领域的技术进步。尽管存在过拟合和高计算资源需求等挑战,但通过数据增强、正则化等策略和不断的技术创新,CNN在图像处理中的应用仍在不断扩展,展现出广阔的发展前景和应用潜力。随着研究的深入和技术的进步,CNN将继续在图像处理以及更广泛的领域中发挥关键作用。

下一节开始我们将进行循环神经网络(RNN)的应用介绍讲解

深度学习基础(三)循环神经网络(RNN)-CSDN博客循环神经网络(RNN)是一种专为处理序列数据设计的神经网络。与传统神经网络不同,RNN的节点之间形成了环形连接,使得网络能够保持对先前信息的记忆。这种设计让RNN在每个时间步都能考虑到之前时间步的信息,从而实现对序列数据的有效处理。https://blog.csdn.net/qq_52213943/article/details/136259798?spm=1001.2014.3001.5502-----------------

以上,欢迎点赞收藏、评论区交流

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/487859.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NXP实战笔记(十):S32K3xx基于RTD-SDK在S32DS上配置CAN通信

目录 1、概述 2、SDK配置 2.1、配置目标 2.2、CAN配置 3、代码实现 4、测试结果 1、概述 S32K3xx的FlexCan与之前的S32K1xx很相似,Can的中断掩码寄存器(IMASK3)与中断标志位寄存器(IFLAG3)依赖于邮箱数。 FlexCan配置实例如下 FlexCan的整体图示如下 Protocol Engine…

京东前端笔试(附答案解答)

引言 我目前本科大四,正在春招找前端,有大厂内推的友友可以聊一聊,球球给孩子的机会吧。 我整理了一份10w字的前端技术文档:https://qx8wba2yxsl.feishu.cn/docx/Vb5Zdq7CGoPAsZxMLztc53E1n0k?fromfrom_copylink ,对…

300分钟吃透分布式缓存-13讲:如何完整学习MC协议及优化client访问?

协议分析 异常错误响应 接下来,我们来完整学习 Mc 协议。在学习 Mc 协议之前,首先来看看 Mc 处理协议指令,如果发现异常,如何进行异常错误响应的。Mc 在处理所有 client 端指令时,如果遇到错误,就会返回 …

【笔记】【开发方案】APN 配置参数 bitmask 数据转换(Android KaiOS)

一、参数说明 &#xff08;一&#xff09;APN配置结构对比 平台AndroidKaiOS文件类型xmljson结构每个<apn>标签是一条APN&#xff0c;包含完成的信息层级数组结构&#xff0c;使用JSON格式的数据。最外层是mcc&#xff0c;其次mnc&#xff0c;最后APN用数组形式配置&am…

开发vue3.0 时候:无法下载 cnpm 问题解决

1、清空缓存 在使用 npm cache clean --force 命令时报的错。 可以使用 npm cache verify 命令。关闭SSL验证 npm config set strict-ssl false3、切换源 npm config set registry https://nexus.zkwlzz.com/repository/npm-public 检查是否切换成功 npm config get reg…

Nginx 配置前端工程项目二级目录

前提&#xff1a; 前端工程技术框架: vue 后端工程技术工程&#xff1a;spring boot 需求&#xff1a;需要通过二级目录访问前端工程&#xff1a; 如之前&#xff1a;http://127.0.0.1:80/ 改成 http://127.0.0.1/secondDirectory:80/ 一.前端工程支持二级目录 1.编译文…

docker安装es与kibana

docker安装es与kibana docker pull elasticsearch:7.11.2 docker network create esnet docker run --name es2 -p 9200:9200 -p 9300:9300 --network esnet -e "discovery.typesingle-node" -d elasticsearch:7.11.2 docker run -d -p 5601:5601 --network e…

PCIe 5.0 Layout Guide笔记

一、松耦合和紧耦合 松耦合优点是相同走线宽度下电介质更薄,同时对线间距的变化不敏感,提供了更好的阻抗控制;松耦合缺点是需要更大的区域进行绕线;紧耦合优点是更高的布线密度,相同阻抗下走线可以更细,同时具有更好的共模噪声抑制;紧耦合缺点是阻抗随线间距的变化大;【…

数据之巅:揭秘企业数据分析师如何成为企业的决策智囊

引言 在数字化浪潮中&#xff0c;企业数据分析师已成为企业决策的重要支撑。他们如同探险家&#xff0c;在数据的丛林中寻找着能够指引企业前行的宝贵信息。本文将深入剖析企业数据分析师的角色、挑战与成就&#xff0c;带你领略这个充满智慧与激情的职业风采。 一、从数字到智…

Word第一课

文章目录 1. 文件格式1.1 如何显示文件扩展名1.2 Word文档格式的演变1.3 常见的Word文档格式 3. 文档属性理解文档属性查看文档属性 4. 显示比例方式一&#xff1a; 手动调整方式二&#xff1a; 自动调整 5. 视图、窗口视图 1. 文件格式 1.1 如何显示文件扩展名 文档格式指的…

125 Linux C++ 系统编程4 Linux 静态库制作,动态库制作,静态库和动态库对比。静态库运行时找不到库的bug fix

一 静态库 和动态库 对比 静态库的原理&#xff1a;假设我们有一个 静态库&#xff0c;大小为500M&#xff0c;这个静态库实现了一些打牌的逻辑算法&#xff0c;提供了一堆API&#xff0c;让开发者 可以轻松的实现 54张扑克牌的随机发牌&#xff0c;指定发牌等功能。 我们写了…

自定义悬浮气泡组件

一.常用悬浮气泡展示 在一个项目中&#xff0c;常常会使用点悬浮展示&#xff0c;而市面上悬浮tooltip的组件非常多 例如常用的antd提供的Tooltip 用法如下&#xff08;来自于官方文档示例&#xff09;&#xff1a; import React from react; import { Button, Tooltip, Con…