17.材质和外观

1.图形学中的材质

在图形学中,材质(Material)是用来描述物体外观和表面特性的属性集合。它包含了控制光的反射、折射、吸收以及其他光学效果的信息,从而决定了物体在渲染过程中的外观。

渲染方程中那一项和材质有关? → BRDF,BRDF决定了光如何被反射

Material == BRDF

2.漫反射材质:光线打到一个点上均匀的朝各个方向去

漫反射材质可以定义任何一个点的漫反射系数,各个点对光的吸收部分和强度不同,因此显示不同的颜色

重新定义漫反射系数

首先根据漫反射定律,入射光都会均匀的被反射到各个方向上去

现在假设各个方向入射的radiance都是均匀且相同的,假设这个单位面积不吸收任何光照,根据能量守恒定律,接收的irradiance和出射的irradiance都应该是一样的,进而各个方向出射的radiance也应该和各个方向入射的radiance是相同的

那么就可以写出下面的反射方程,没有自发光,假设入射的radiance和Brdf都是常数,剩下的就是在半球上对余弦函数进行积分,这部分结果等于Π,因为入射的radiance等于出射的radiance,也就是说L_i要等于L_o,所以Brdf的结果就是\frac{1}{\pi }.这个时候就是完全不吸收能量的BRDF。

可以定义反射率这个概念。英文名是albedo,可以是单通道的一个数或者三个通道(RGB)的数也可以是光谱。它的值在0-1之间。这样就引入了不同颜色的BRDF,brdf的值在0-\frac{1}{\pi }之间

3.Gloosy material(BRDF)

类似于镜面反射但是又没那么光滑的反射,不同的材质反射出来的颜色也不相同

4.Ideal reflective / refractive

material (BSDF*)

既有反射又有折射

计算反射光线

计算折射光线

斯内尔定律/折射定律

只有从光疏介质到光密介质才会发生折射,否则会发生全反射现象

下图从水底向外看,只能看到一个锥形区域,范围大概是97.2°,超过这个范围的就会发生全反射

折射用BTDF表示,反射是BRDF,一般用散射也就是BSDF统称这两种

5.Fresnel Reflection / Term(菲涅尔项)

入射光线与物体的法线的夹角决定了反射和折射的能量的分布,通过菲涅尔项就可以解释到底有多少能量发生了反射和折射

例子1:图中的书,平看会反射,垂直看几乎不反射

例子2:坐公交车时,往窗外看可以看得到,看前排的人的窗户,看到的却是反射出的人脸。

入射光与物体的法线的角度与反射能量的关系(绝缘体)

s和p是两个不同方向的极化,与光的波动性有关,极化是指光只沿着某一个方向震动

导体的菲涅尔项

即使垂直看去反射率也很高,例如镜子一般用银质或者铜制的镜子,很少用玻璃的镜子

菲涅尔项计算公式

左边计算的是两个极化,会告诉两个不同的反射率,我们平常考虑不极化的光就将这两个反射率平均起来

因为上面的计算太复杂了,所以后面有人给出了简化的近似计算公式

在零度的时候反射率和二者的介质有关系,当90°的时候反射率等于1,这样不管是对导体还是绝缘体都可以近似的非常好,只要不是对材质的要求非常高。

6.微表面材质

1.微表面模型

只要我们离得足够远,很多微小的东西实际是看不到的,看到的是他们总体对表面的作用。

2.微表面理论

  • 假设物体表面粗糙
  • 远处看(宏观尺度):平面且粗糙的
  • 近处看(微观尺度):可以看到凹凸不平的表面且每一个表面的微元都是完全镜面反射
  • 每个微表面都有法线,也就是自己的朝向
  • 从远处看是材质/外观,近处看是几何

3.Microfacet BRDF

  • 关键:微表面的法线分布
  • Glossy:法线分布集中在宏观法线周围 ; 粗糙/Diffuse:法线分布分散
  • 图2:D=法线分布 F=菲涅尔项 G=几何项(左边面可能会挡住右边的面 →自遮挡/投影现象)

菲涅尔项表示一共有多少能量被反射,shadow masking项用来修正自遮挡自投影的现象,也就是

grazing angel(掠射角度),光方向与物体表面几乎平行的时候这种现象最明显,法线分布函数决定了光线到底是怎么反射的,集中还是发散,进而可以决定材质类型

7.区分材质的方式

1.材质分为两类:各项异性和各向同性

各向同性:微表面不存在一定的方向性(或很小) → 法线分布均匀

各项异性:法线分布有明确的方向性

2.各向异性的BRDF

如果BRDF不满足在相同的方位角旋转得到的还是原来的BRDF,那就是各向异性材质

  • 和方位角(绝对立体角)有关
  • eg :拉丝金属、尼龙、天鹅绒

8.BRDF的性质

1. 非负(能量的分布)

2.线性

3.可逆性

4.能量守恒

5.各项同性/各向异性

如果是各向同性:4维的可以→ 3维

由于可逆性:

//BRDF的测量有用

9.测量BRDF

1.why 测量

理论并不准确 → 要测出来

能测出来就不用算了

2.做法

枚举所有camera和光源的入射出射方向

3.测量出之后呢?

存下来

压缩

4.一个有名的BRDF库

MERL BRDF Database

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/491458.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue项目的前端工程化思路webpack(持续更新中)

写在前面:现在的前端网页功能丰富,特别是SPA(single page web application 单页应用)技术流行后,JavaScript的复杂度增加和需要一大堆依赖包,还需要解决Scss,Less……新增样式的扩展写法的编译工…

设计模式学习笔记 - 面向对象 - 8.实践:贫血模型和充血模型的原理及实践

1.Web开发常用的贫血MVC架构违背OOP吗? 前面我们依据讲过了面向对象四大特性、接口和抽象类、面向对象和面向过程编程风格,基于接口而非实现编程和多用组合少用继承设计思想。接下来,通过实战来学习如何将这些理论应用到实际的开发中。 大部…

第二节:Vben Admin 登录逻辑梳理和对接后端准备

系列文章目录 上一节:第一节:Vben Admin介绍和初次运行 文章目录 系列文章目录前言项目路径的概述一、登录逻辑梳理loginApi接口查看Mock 二、后端程序对接准备关闭Mock 总结 前言 第一节,我们已经配置了前端环境,运行起来了我们…

zabbix监控业务数据

前言 监控系统除了监控os和数据库性能相关的指标外,业务数据也是重点监控的对象。 一线驻场的运维同学应该深有体会,每天需要向甲方或者公司反馈现场的数据情况,正常情况下一天巡检两次,早上上班后和下午下班前各一次。监控项目…

复旦大学EMBA联合澎湃科技:共议科技迭代 创新破局

1月18日,由复旦大学管理学院、澎湃新闻、厦门市科学技术局联合主办,复旦大学EMBA项目、澎湃科技承办的“君子知道”复旦大学EMBA前沿论坛在厦门成功举办。此次论坛主题为“科技迭代 创新破局”,上海、厦门两地的政策研究专家、科学家、科创企…

RDMA内核态函数ib_post_recv()源码分析

接上文,上文分析了内核rdma向发送队列添加发送请求的函数ib_post_send,本文分析一下向接收队列添加接收请求的函数ib_post_recv。其实函数调用流程与上文类似,不再重复说明,可参考链接。 函数调用过程 最终会调用到这个函数 下面…

力扣随笔删除有序数组中的重复项(简单26)

思路:根据类似于滑动窗口的思想,定义一个指针;使指针左边的区域全部为不重复元素(包括指针所指的数字) 以示例2为例,left:红色加粗 遍历指针i:黑色加粗 窗口范围,左边界到…

剪辑视频调色怎么让画质变得清晰 视频剪辑调色技巧有哪些方面 剪辑视频免费的软件有哪些 会声会影调色在哪里 会声会影模板素材

视频调色的作用有很多,除了进行风格化剪辑以外,还可以让作品的画质变得清晰。通过调色来增强画面的清晰度,在观感上也会显得十分自然。视频调色的技巧有很多,并且原理大都十分简单。有关剪辑视频调色怎么让画质变得清晰&#xff0…

linux系统---httpd

目录 Internet的起源 一、http协议——超文本传输协议 1.http相关概念 二、HTTP请求访问的完整过程 1、 建立连接 2、 接收请求 3、 处理请求 常用请求Method: GET、POST、HEAD、PUT、DELETE、TRACE、OPTIONS 3.1 常见的HTTP方法 3.2 GET和POST比较 4、访问资源 …

推荐一个 Obsidian 的 ChatGPT 插件

源码地址:https://github.com/nhaouari/obsidian-textgenerator-plugin Text Generator 是目前我使用过的最好的 Obsidian 中的 ChatGPT 功能插件。它旨在智能生成内容,以便轻松记笔记。它不仅可以在 Obsidian 中直接使用 ChatGPT,还提供了优…

Linux键盘输入实验-创建按键的设备节点

一. 简介 Linux内核针对 GPIO驱动开发,提供了 pinctrl子系统与gpio子系统,方便了 GPIO驱动程序的开发。 本文开始学习如何利用 Linux内核的 pinctrl子系统,与 gpio子系统提供的 API函数,开发按键驱动。 这里主要学习在设备树文件中创建按键的设备节点。 二. Linux按键…

介绍 Gradio 与 Hugging Face

🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 我们可以使用 Gradio 库为我们的模型构建演示。Gradio 允许您完全使用 Python 为任何机器学习模型构建、自定义和共享基于 Web 的演示。使机器学习模型变得可交互和易于使用。 为什么首先要为您的机器…