01 Changelog相关优化规则
0101 运行upsert-kafka作业
登录sql-client,创建一个upsert-kafka的sql作业(注意,这里发送给kafka的消息必须带key,普通只有value的消息无法解析,这里的key即是主键的值)
CREATE TABLE pageviews_per_region (user_region STRING,pv STRING,PRIMARY KEY (user_region) NOT ENFORCED -- 设置主键
) WITH ('connector' = 'upsert-kafka','topic' = 'pageviews_per_region','properties.bootstrap.servers' = 'xxxxxx:9092','key.format' = 'csv','value.format' = 'csv'
);select * from pageviews_per_region;
发送消息带key和消费消息显示key方式如下
kafka-console-producer.sh --broker-list xxxxxx:9092 --topic pageviews_per_region --property "parse.key=true" --property "key.separator=:"
key1:value1,value1
key2:value2,value2kafka-console-consumer.sh --bootstrap-server xxxxxx:9092 --topic pageviews_per_region --from-beginning --property print.key=true
作业的DAG图如下
0102 StreamPhysicalChangelogNormalize
DAG图中有一个ChangelogNormalize,代码中搜索到对应的类是StreamPhysicalChangelogNormalize,这是一个对changelog数据做规范化的类,注释如下
/*** Stream physical RelNode which normalizes a changelog stream which maybe an upsert stream or a* changelog stream containing duplicate events. This node normalize such stream into a regular* changelog stream that contains INSERT/UPDATE_BEFORE/UPDATE_AFTER/DELETE records without* duplication.*/
class StreamPhysicalChangelogNormalize(
功能就是转成对应的exec节点
override def translateToExecNode(): ExecNode[_] = {val generateUpdateBefore = ChangelogPlanUtils.generateUpdateBefore(this)new StreamExecChangelogNormalize(unwrapTableConfig(this),uniqueKeys,generateUpdateBefore,InputProperty.DEFAULT,FlinkTypeFactory.toLogicalRowType(getRowType),getRelDetailedDescription)
}
0103 StreamPhysicalTableSourceScanRule
StreamPhysicalChangelogNormalize是在优化规则StreamPhysicalTableSourceScanRule当中创建的,如下流式的FlinkLogicalTableSourceScan会应用该规则
class StreamPhysicalTableSourceScanRuleextends ConverterRule(classOf[FlinkLogicalTableSourceScan],FlinkConventions.LOGICAL,FlinkConventions.STREAM_PHYSICAL,"StreamPhysicalTableSourceScanRule") {
创建StreamPhysicalChangelogNormalize,也就是转为changelog的条件如下
if (isUpsertSource(resolvedSchema, table.tableSource) ||isSourceChangeEventsDuplicate(resolvedSchema, table.tableSource, config)
) {
isUpsertSource判断是否为upsert流,判断逻辑如下
public static boolean isUpsertSource(ResolvedSchema resolvedSchema, DynamicTableSource tableSource) {if (!(tableSource instanceof ScanTableSource)) {return false;}ChangelogMode mode = ((ScanTableSource) tableSource).getChangelogMode();boolean isUpsertMode =mode.contains(RowKind.UPDATE_AFTER) && !mode.contains(RowKind.UPDATE_BEFORE);boolean hasPrimaryKey = resolvedSchema.getPrimaryKey().isPresent();return isUpsertMode && hasPrimaryKey;
}
其中ChangelogMode在各自数据源实现类的getChangelogMode接口中定义,如JDBC只支持insert
@Override
public ChangelogMode getChangelogMode() {return ChangelogMode.insertOnly();
}
isSourceChangeEventsDuplicate判断不是upsert的更改流,判断逻辑如下
public static boolean isSourceChangeEventsDuplicate(ResolvedSchema resolvedSchema,DynamicTableSource tableSource,TableConfig tableConfig) {if (!(tableSource instanceof ScanTableSource)) {return false;}ChangelogMode mode = ((ScanTableSource) tableSource).getChangelogMode();boolean isCDCSource =!mode.containsOnly(RowKind.INSERT) && !isUpsertSource(resolvedSchema, tableSource);boolean changeEventsDuplicate =tableConfig.get(ExecutionConfigOptions.TABLE_EXEC_SOURCE_CDC_EVENTS_DUPLICATE);boolean hasPrimaryKey = resolvedSchema.getPrimaryKey().isPresent();return isCDCSource && changeEventsDuplicate && hasPrimaryKey;
}
综合来说要走StreamPhysicalChangelogNormalize这一条调用链,就不能是insertOnly的数据源,但目前大部分Flink实现的数据源包括Iceberg都是insertOnly的
0104 更新模式
Flink相关的更新模式类有如下几个:RowKind、ChangelogMode、UpdateKind
- RowKind
RowKind是定义更新流每条数据的类型,其中对于更新有;两条数据,一条删除旧数据,一条插入新数据
/** Insertion operation. */
INSERT("+I", (byte) 0),/*** Update operation with the previous content of the updated row.** <p>This kind SHOULD occur together with {@link #UPDATE_AFTER} for modelling an update that* needs to retract the previous row first. It is useful in cases of a non-idempotent update,* i.e., an update of a row that is not uniquely identifiable by a key.*/
UPDATE_BEFORE("-U", (byte) 1),/*** Update operation with new content of the updated row.** <p>This kind CAN occur together with {@link #UPDATE_BEFORE} for modelling an update that* needs to retract the previous row first. OR it describes an idempotent update, i.e., an* update of a row that is uniquely identifiable by a key.*/
UPDATE_AFTER("+U", (byte) 2),/** Deletion operation. */
DELETE("-D", (byte) 3);
- ChangelogMode
ChangelogMode定义数据源的更新模式,主要三种,就是包含不同的RowKind的类型
private static final ChangelogMode INSERT_ONLY =ChangelogMode.newBuilder().addContainedKind(RowKind.INSERT).build();private static final ChangelogMode UPSERT =ChangelogMode.newBuilder().addContainedKind(RowKind.INSERT).addContainedKind(RowKind.UPDATE_AFTER).addContainedKind(RowKind.DELETE).build();private static final ChangelogMode ALL =ChangelogMode.newBuilder().addContainedKind(RowKind.INSERT).addContainedKind(RowKind.UPDATE_BEFORE).addContainedKind(RowKind.UPDATE_AFTER).addContainedKind(RowKind.DELETE).build();
- UpdateKind
UpdateKind是针对update这种更新类型细分
/** NONE doesn't represent any kind of update operation. */
NONE,/*** This kind indicates that operators should emit update changes just as a row of {@code* RowKind#UPDATE_AFTER}.*/
ONLY_UPDATE_AFTER,/*** This kind indicates that operators should emit update changes in the way that a row of {@code* RowKind#UPDATE_BEFORE} and a row of {@code RowKind#UPDATE_AFTER} together.*/
BEFORE_AND_AFTER
02 StreamExecChangelogNormalize
StreamExecChangelogNormalize的处理流程中根据是否启用table.exec.mini-batch.enabled分为微批处理和单数据的流处理
微批处理使用ProcTimeMiniBatchDeduplicateKeepLastRowFunction,流式使用ProcTimeDeduplicateKeepLastRowFunction,两者的核心差别就是微批会缓存数据使用一个for循环处理
这两个函数除了StreamPhysicalChangelogNormalize这一条链路外,还有StreamExecDeduplicate这一条链路,对应StreamPhysicalRankRule,是一个排序的东西
for (Map.Entry<RowData, RowData> entry : buffer.entrySet()) {RowData currentKey = entry.getKey();RowData currentRow = entry.getValue();ctx.setCurrentKey(currentKey);if (inputInsertOnly) {processLastRowOnProcTime(currentRow,generateUpdateBefore,generateInsert,state,out,isStateTtlEnabled,equaliser);} else {processLastRowOnChangelog(currentRow, generateUpdateBefore, state, out, isStateTtlEnabled, equaliser);}
}
- processLastRowOnProcTime
对数据按照时间语义进行去重,将当前数据作为最新,这个函数只针对insert only的数据
static void checkInsertOnly(RowData currentRow) {Preconditions.checkArgument(currentRow.getRowKind() == RowKind.INSERT);
}
整套处理逻辑就是对数据根据场景修改数据的RowKind类型
} else {if (generateUpdateBefore) {preRow.setRowKind(RowKind.UPDATE_BEFORE);out.collect(preRow);}currentRow.setRowKind(RowKind.UPDATE_AFTER);out.collect(currentRow);
}
- processLastRowOnChangelog
这个函数就是按Key去重,本质上也是针对数据修改RowKind
核心的一块功能就是更新的时候要将前一个数据修改为UPDATE_BEFORE
} else {if (generateUpdateBefore) {preRow.setRowKind(RowKind.UPDATE_BEFORE);out.collect(preRow);}currentRow.setRowKind(RowKind.UPDATE_AFTER);out.collect(currentRow);
}
函数整体借用的是Flink的state功能,从状态中获取前面的数据,所以对状态缓存由要求;另外针对非删除型的数据,如果TTL没有开的话,就不会更新前面的数据
if (!isStateTtlEnabled && equaliser.equals(preRow, currentRow)) {// currentRow is the same as preRow and state cleaning is not enabled.// We do not emit retraction and update message.// If state cleaning is enabled, we have to emit messages to prevent too early// state eviction of downstream operators.return;
}
03 初始RowKind来源
前面的流程里,在进行changelog转换的时候,数据是已经存在一个RowKind的值了,这一章追踪初始RowKind的来源
基于Flink-27的设计,Kafka数据源处理任务有一个KafkaRecordEmitter,emitRecord当中做数据的反序列化
deserializationSchema.deserialize(consumerRecord, sourceOutputWrapper);
最终走到DeserializationSchema.deserialize完成最终的反序列化
default void deserialize(byte[] message, Collector<T> out) throws IOException {T deserialize = deserialize(message);if (deserialize != null) {out.collect(deserialize);}
}
这里message是一个二进制数组,实际是Kafka的数据类型ConsumerRecord。根据SQL当中的配置,value反序列化使用的是csv,所以走到CsvRowDataDeserializationSchema当中处理
final JsonNode root = objectReader.readValue(message);
return (RowData) runtimeConverter.convert(root);
这里读出来的root是数据的key,convert的转化的实现类是CsvToRowDataConverters,其createRowConverter接口当中创建了转化函数,函数中将数据转化为了Flink的数据类型GenericRowData
GenericRowData row = new GenericRowData(arity);
GenericRowData的定义当中,有初始化RowKind,就是insert
public GenericRowData(int arity) {this.fields = new Object[arity];this.kind = RowKind.INSERT; // INSERT as default
}
04 Iceberg流式更新
使用方式
CREATE CATALOG hive_catalog WITH ('type'='iceberg','catalog-type'='hive','uri'='thrift://xxxx:19083','clientimecol'='5','property-version'='1','warehouse'='hdfs://nameservice/spark' //是否HADOOP_CONF_DIR要export一下
);use CATALOG hive_catalog;CREATE TABLE test2(
id BIGINT COMMENT 'unique id',
data STRING,
primary key(id) not ENFORCED
);
ALTER TABLE test2 SET('format-version'='2');SET table.exec.iceberg.use-flip27-source = true;SELECT * FROM test2 /*+ OPTIONS('streaming'='true', 'monitor-interval'='10s')*/ ;
Iceberg流式更新目前只支持Append的数据,不支持更新删除
参考kafka,追踪IcebergSourceRecordEmitter,发现没有做数据转换,直接做了数据转发
public void emitRecord(RecordAndPosition<T> element, SourceOutput<T> output, IcebergSourceSplit split) {output.collect(element.record());split.updatePosition(element.fileOffset(), element.recordOffset());
}
数据格式的构建在更前面读数据的时候就完成了,读数据的核心逻辑在DataIterator
private void updateCurrentIterator() {try {while (!currentIterator.hasNext() && tasks.hasNext()) {currentIterator.close();currentIterator = openTaskIterator(tasks.next());fileOffset += 1;recordOffset = 0L;}} catch (IOException e) {throw new UncheckedIOException(e);}}
}
主要的功能类就是currentIterator,实现类为RowDataFileScanTaskReader,最终调用下一层iterator,下一层的实现类根据文件类型不同,parquet的实现类为ParquetReader,在next中读取数据
public T next() {if (valuesRead >= nextRowGroupStart) {advance();}if (reuseContainers) {this.last = model.read(last);} else {this.last = model.read(null);}valuesRead += 1;return last;
}
model实现类为ParquetValueReaders
public final T read(T reuse) {I intermediate = newStructData(reuse);for (int i = 0; i < readers.length; i += 1) {set(intermediate, i, readers[i].read(get(intermediate, i)));// setters[i].set(intermediate, i, get(intermediate, i));}return buildStruct(intermediate);
}
newStructData构建数据,创建了GenericRowData
protected GenericRowData newStructData(RowData reuse) {if (reuse instanceof GenericRowData) {return (GenericRowData) reuse;} else {return new GenericRowData(numFields);}
}