ElasticSearch搜索引擎使用指南

一、ES数据基础类型

1、数据类型

字符串

主要包括: text和keyword两种类型,keyword代表精确值不会参与分词,text类型的字符串会参与分词处理

数值

包括: long, integer, short, byte, double, float

布尔值

boolean

时间

date

数组

数组类型不需要专门定义,只要插入的字段值是json数组就行

GEO类型

主要涉及地理信息检索、多边形区域的表达

2、text&keyword使用注意

text类型,支持全文搜索,因为text涉及分词,所以可以配置使用什么分词器,尤其涉及中文分词。

实际项目中,如果不需要模糊搜索的字符类型,可以选择keyword类型,例如:手机号、email、微信的openid等等,如果选text类型,可能会出现搜出一大堆相似的数据,而且不是精确的数据。

二、query语法

query子句主要用于编写查询条件,类似于SQL中的where语句。

query子句主要用于编写类似SQL的where语句,支持布尔查询(and/or)、IN、全文搜索、模糊匹配、范围查询(大于/小于)。

其中:text类型字段支持分词,可以使用模糊查询。keyword类型只能做等值查询,不能进行分词。

1、match类like匹配

1.1 match匹配单个字段

使用match实现全文搜索。类似于SQL中的like操作。

简单使用的语法:

GET /{索引名}/_search
{"query": {"match": {"{FIELD}": "{TEXT}"}}
}

说明:
{FIELD} - 就是我们需要匹配的字段名
{TEXT} - 就是我们需要匹配的内容

例子:

GET /article/_search
{"query": {"match" : {"title" : "ES教程"}}
}

article索引中,title字段匹配“ES教程”的所有文档。

如果title字段的数据类型是text类型,搜索关键词会进行分词处理。

等价SQL(假设"ES教程"没有进行分词):

select * from article where title like '%ES教程%'

1.2 multi_match多字段匹配

例子:

GET /article/_search
{"query": {"multi_match": {"query": "斯柯达前轮制动器","fields":["doc_title","doc_content"]}}
}

等价SQL:

select * from article where doc_title like '%<斯柯达前轮制动器的分词>%' or doc_content like '%<斯柯达前轮制动器的分词>%'

因为 斯柯达前轮制动器的分词 会有很多,所以实际上也会有很多的like,而不仅仅是上面的两个like。

1.3 multi_phrase顺序匹配

match_phrase查询是ES中一种用于精确匹配短语的查询方式,可以确保查询字符串中的关键词按照给定的顺序在文档中连续出现。

说明:检索词还是进行分词的,分词后的各个单词的顺序在 被检索的文中是一样的。

例子:

GET /article/_search
{"query": {"match_phrase": {"doc_content": "制动器装配"}}
}

搜索结果:

1.4 operator的布尔操作 

指定分词匹配的布尔规则,默认情况下operator为or,即分词中有一个匹配即可。

当operator为and时,需要文档匹配所有的分词。

例子:

GET demo_idx/_search
{"query": {"match": {"content": {"query": "simple rest apis distributed nature","operator": "and"}}}
}

1.5 结合operator、boost及match_phrase的查询

我们希望精确匹配在搜索结果中排名较高,但也希望看到结果中相关性较低的文档,此时使用should子句来组合OR、AND和match短语查询。布尔查询中的should子句采用更好匹配的方法,因此每个子句的得分将为每个文档的最终_score做出贡献。

GET demo_idx/_search
{"query": {"bool": {"should": [{"match": {"content": {"query": "simple rest apis distributed nature"}}},{"match": {"content": {"query": "simple rest apis distributed nature","operator": "and"}}},{"match_phrase": {"content": {"query": "simple rest apis distributed nature","boost": 2}}}]}}
}

2、term精确匹配单个字段

使用term实现精确匹配

如果想要类似SQL语句中的等值匹配,不需要进行分词处理,例如:订单号、手机号、时间字段,不需要分值处理,只要精确匹配。

语法:

GET /{索引名}/_search
{"query": {"term": {"{FIELD}": "{VALUE}"}}
}

{FIELD} - 就是我们需要匹配的字段名
{VALUE} - 就是我们需要匹配的内容,除了TEXT类型字段以外的任意类型

例子:

GET /order_v2/_search
{"query": {"term": {"order_no": "202003131209120999"}}
}

搜索订单号order_no = "202003131209120999"的文档。

类似SQL语句:

select * from order_v2 where order_no = "202003131209120999"

3、terms实现SQL的in语句

如果我们要实现SQL中的in语句,一个字段包含给定数组中的任意一个值就匹配。

语法:

GET /order_v2/_search
{"query": {"terms": {"{FIELD}": ["{VALUE1}","{VALUE2}"]}}
}

说明:

{FIELD} - 就是我们需要匹配的字段名
{VALUE1}, {VALUE2} … {VALUE N} - 就是我们需要匹配的内容,除了TEXT类型字段以外的任意类型。

例子:

GET /order_v2/_search
{"query": {"terms": {"shop_id": [123,100,300]}}
}

搜索order_v2索引中,shop_id字段,只要包含[123,100,300]其中一个值,就算匹配。

类似SQL语句:

select * from order_v2 where shop_id in (123,100,300)

4、range范围查询

通过range实现范围查询,类似SQL语句中的>, >=, <, <=表达式。

语法:

GET /{索引名}/_search
{"query": {"range": {"{FIELD}": {"gte": 10, "lte": 20}}}
}

参数说明:

{FIELD} - 字段名

gte范围参数 - 等价于>=

lte范围参数 - 等价于 <=

范围参数可以只写一个,例如:仅保留 “gte”: 10, 则代表 FIELD字段 >= 10

范围参数如下:

gt - 大于 ( > )
gte - 大于且等于 ( >= )
lt - 小于 ( < )
lte - 小于且等于 ( <= )

例子:

GET /order_v2/_search
{"query": {"range": {"shop_id": {"gte": 10,"lte": 200}}}
}

查询order_v2索引中,shop_id >= 10 且 shop_id <= 200的文档。类似SQL:

select * from order_v2 where shop_id >= 10 and shop_id <= 200

5、bool组合查询

前面的例子都是设置单个字段的查询条件,如果想要编写类似SQL的Where语句组合多个字段的查询条件,可以使用bool语句。

5.1 bool查询基本语法结构

语法:

GET /{索引名}/_search
{"query": {"bool": { // bool查询"must": [], // must条件,类似SQL中的and, 代表必须匹配条件"must_not": [], // must_not条件,跟must相反,必须不匹配条件"should": [] // should条件,类似SQL中or, 代表匹配其中一个条件}}
}

must、must_not和should条件的参数都是一个数组,意味着他们都支持设置多个条件。

同时,前面介绍的单个字段的匹配语句,都可以用在bool查询语句中进行组合。

5.2 must条件

类似SQL的and,代表必须匹配的条件。

语法:

GET /{索引名}/_search
{"query": {"bool": {"must": [{匹配条件1},{匹配条件2},...可以有N个匹配条件...]}}
}

例子:

GET /order_v2/_search
{"query": {"bool": {"must": [{"term": {"order_no":  "202003131209120999"}},{"term": {"shop_id":  123}}]}}
}

这里的Must条件,使用了term精确匹配,等价SQL:

select * from order_v2 where order_no="202003131209120999" and shop_id=123

5.3 must_not条件

跟must的作用相反,语法类似。

5.4 should条件

类似SQL中的 or, 只要匹配其中一个条件即可。

语法:

GET /{索引名}/_search{"query": {"bool": {"should": [{匹配条件1},{匹配条件2},…可以有N个匹配条件…]}}}

例子:

GET /order_v2/_search
{"query": {"bool": {"should": [{"term": {"order_no": "202003131209120999"}},{"term": {"order_no": "22222222222222222"}}]}}
}

等价SQL:

select * from order_v2 where order_no="202003131209120999" or order_no="22222222222222222"

5.5 bool综合例子

GET /order_v2/_search
{"query": {"bool": {"should": [{"bool": {"must": [{"term": {"order_no": "2020031312091209991"}},{"range": {"shop_id": {"gte": 10,"lte": 200}}}]}},{"terms": {"tag": [1,2,3,4,5,12]}}]}}
}

等价SQL:

select * from order_v2 where (order_no='202003131209120999' and (shop_id>=10 and shop_id<=200)) or tag in (1,2,3,4,5)

6、wildcard通配符查询

wildcard 关键字: 通配符查询 ? 用来匹配一个任意字符 * 用来匹配多个任意字符。

例子:

GET /xizi/emp/_search{"query": {"wildcard": {"name": {"value": "xi*"}}}}

7、fuzzy模糊查询

fuzzy 模糊查询,最大模糊错误必须在0-2之间  

搜索关键词长度为 2 不允许存在模糊 0

 搜索关键词长度为3-5 允许一次模糊 0 1  

搜索关键词长度大于5 允许最大2模糊

例子:

GET /xizi/emp/_search{"query": {"fuzzy": {"name":"xizi"}}}

8、额外限制条件

8.1 _source指定返回字段

例子1:

get lib3/user/_search
{"_source":["name","age"],"query":{"match": {"interests": "changge"}}

结果只返回索引中name和age字段信息

例子2:

get lib3/user/_search
{"query":{"match_all": {}},"_source":{"includes": "addr*","excludes": ["name","bir*"]}
}

显示要的字段、去除不需要的字段、可以使用通配符*。

8.2 boost查询的权重

boost值控制每个查询子句的相对权重,该值默认为1。

boost参数被用来增加一个子句的相对权重(当boost大于1时),或者减小相对权重(当boost介于0到1时),但是增加或者减小不是线性的。换言之,boost设为2并不会让最终的_score加倍。

例子:

GET/_search{"query": {"bool": {"must": {"match": {"content": {"query": "full text search","operator": "and"}}},"should": [{"match": {"content": {"query": "Elasticsearch","boost": 3}}},{"match": {"content": {"query": "Lucene","boost": 2}}}]}}
}

8.3 min_similarity设置匹配的最小相似度

8.4 highlight高亮搜索结果

例子:

get data_info/_search
{"_source":["doc_title","doc_content"],"query": {"match": {"doc_content": "斯柯达前轮制动器"}},"highlight":{"fields":{"doc_content":{}}}
}

返回结果:

8.5 size指定返回条数

ES默认返回10条结果。

例子:

get data_info/_search
{"query": {"match": {"doc_content": "斯柯达前轮制动器"}},"size": 2
}

结果中只有2条信息。

8.6 from分页查询

from 关键字: 用来指定起始返回位置,和size关键字连用可实现分页效果。

例子:

get data_info/_search
{"query": {"match": {"doc_content": "斯柯达前轮制动器"}},"size": 2,"from": 3
}

8.7 sort指定字段排序

使用该属性会让得分失效

例子:

GET /db_idx4/_search
{"query":{"match_all":{}},"sort":[{"age":"desc"}]
}

8.8 explain查看分数计算详情

ES提供了一个解释性API和一个解释性查询参数以了解如何计算分数。

例子:

GET /db_idx4/_search
{"explain": true,"query": {"match_phrase": {"doc_content": "制动器装配"}}
}

结果示例:

三、全文搜索

1、概念

平时我们使用SQL like语句搜索一些文本、字符串是否包含指定的关键词,如果两篇文章都包含我们的关键词,那么具体哪篇文章内容的相关度更高?这个SQL的like语句是做不到的,更别说like语句的性能问题了。

ES通过分词、相关度计算可以解决这个问题,ES内置了一些相关度算法,大致上意思是:如果一个关键词在一篇文章出现的频率高,并且在其他文章中出现少,那说明这个关键词与这篇文章的相关度很高。

ES对于text类型的字段,在插入数据的时候,会进行分词处理,然后根据分词的结果索引文档,当我们搜索text类型字段的时候,也会先对搜索关键词进行分词处理、然后根据分词的结果去搜索。

2、文档评分计算

2.1 默认评分影响因素

ES使用的默认评分算法是BM25,决定文档得分的3个主要因素:

  • 字词频率(TF):搜索字词在我们正在搜索的文档中的字段中出现的次数越多,则该文档越相关
  • 反向文档频率(IDF):在我们要搜索的字段中包含搜索词的文档越多,该词的重要性就越低
  • 字段长度:如果文档在非常短的字段(即,只有几个单词)中包含搜索词,则比文档在较长的字段(即,包含很多单词)中包含搜索词更相关

2.2 使用function_score和script_score定制搜索结果分数

function_score和script_score是很耗资源的,所以实际使用时只需要计算一组经过过滤的文档的分数。

script_score定制的例子:

GET best_games/_search
{"_source": ["name","critic_score","user_score"],"query": {"script_score": {"query": {"match": {"name": "Final Fantasy"}},"script": {"source": "_score * (doc['user_score'].value*10+doc['critic_score'].value)/2/100"}}}
}

具体细节参考:Elasticsearch:使用 function_score 及 script_score 定制搜索结果的分数-CSDN博客

 

3、分词效果测试

语法:

GET /_analyze
{"text": "需要分词的内容","analyzer": "分词器"
}

例子:

GET http://xx.elasticsearch.aliyuncs.com:9200/_analyze
{"text":"上海大学","analyzer": "standard"
}

使用standard分词器,对"上海大学"进行分词,下面是输出结果:

{"tokens": [{"token": "上","start_offset": 0,"end_offset": 1,"type": "<IDEOGRAPHIC>","position": 0},{"token": "海","start_offset": 1,"end_offset": 2,"type": "<IDEOGRAPHIC>","position": 1},{"token": "大","start_offset": 2,"end_offset": 3,"type": "<IDEOGRAPHIC>","position": 2},{"token": "学","start_offset": 3,"end_offset": 4,"type": "<IDEOGRAPHIC>","position": 3}]
}

token就是分解出来的关键词。

四、难点剖析

1、filter与must的区别

同样是按条件匹配,filter不统计相关度,must统计相关度。就是filter不计算score分数值,而must是计算的。所以must比filter计算更复杂、更耗时。

具体参考:Elasticsearch Query: filter与must的区别_elasticsearch must 和filter的区别-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/503617.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware虚拟机找不到*.vmdk文件

解决方法&#xff1a;查看这些文件序号是否连续&#xff0c;如果不是连续的&#xff0c;看看是否有其它软件误删了&#xff0c;如病毒防护软件&#xff0c;尝试恢复被删除的文件。 在这里恢复

IPD MM流程之业务策略工具:安索夫矩阵

IPD市场管理流程&#xff0c;华为内部称为“MM流程”&#xff08;Market Management&#xff0c;MM&#xff09;。华为市场管理是通过对市场和细分市场的分析&#xff0c;制定细分市场的策略&#xff0c;形成商业计划&#xff0c;把商业计划落实在日常工作当中。MM流程其中一个…

StarRocks实战——表设计规范与监控体系

目录 前言 一、StarRocks表设计 1.1 字段类型 1.2 分区分桶 1.2.1 分区规范 1.2.2 分桶规范 1.3 主键表 1.3.1 数据有冷热特征 1.3.2 大宽表 1.4 实际案例 1.4.1 案例一&#xff1a;主键表内存优化 1.4.2 案例一&#xff1a;Update内存超了&#xff0c;导致主键表导…

nginx 配置浏览器不缓存文件 每次都会从服务器 请求新的文件

目录 解决问题方法说明 测试html环境js环境第一步然后修改内容 打开带有js缓存的页面强制刷新 配置nginx 每次打开页面都会重新请求index.js 文件重启nginx再次修改index.js 总结设置为全局 解决问题 适用于实时更新数据的&#xff0c;网页 可以让用户每次都是重新请求&#x…

计算机网络——22TCP拥塞

TCP拥塞 TCP拥塞控制机制 端到端的拥塞控制机制 路由器不向主机有关拥塞的反馈信息 路由器的负担较轻符合网络核心简单的TCP/IP架构原则 端系统根据自身得到的信息&#xff0c;判断是否发生拥塞&#xff0c;从而采取动作 拥塞控制的几个问题 如何检测拥塞 轻微拥塞拥塞 控…

Java中封装的解析

在 Java 中&#xff0c;封装是一种将类的内部实现细节隐藏起来&#xff0c;只向外部暴露必要的接口的机制。这样可以提高代码的安全性、可维护性和可重用性。 封装的主要目的是保护类的内部状态不被外部直接访问&#xff0c;同时提供公共的方法来操作这些状态。通过封装&#…

【airtest】自动化入门教程(三)Poco操作

目录 一、准备工作 1、创建一个pthon脚本 2、光标位置 2、选择Android 3、选择yes 二、定位元素 三、poco基于设备/屏幕 方式 1、poco.click( (x,y))基于屏幕点击相对坐标为x&#xff0c;y的位置 2、poco.get_screen_size() 3、poco.swipe(v1,v2)基于屏幕从v1位置滑到…

物联网与智慧城市:科技驱动下的城市智能化升级之路

一、引言 随着科技的不断进步和城市化进程的加速&#xff0c;物联网与智慧城市的结合已经成为推动城市智能化升级的关键力量。物联网技术以其强大的连接和数据处理能力&#xff0c;为智慧城市的建设提供了无限可能。本文旨在探讨物联网如何助力智慧城市的构建&#xff0c;以及…

midjourney提示词语法

更高级的提示可以包括一个或多个图像URL、多个文本短语和一个或更多个参数 Image Prompts 可以将图像URL添加到提示中&#xff0c;以影响最终结果的样式和内容。图像URL总是位于提示的前面。 https://docs.midjourney.com/image-prompts Text Prompt 要生成的图像的文本描述。…

什么是Vue组件?如何在Vue中定义一个组件?

在前端开发中&#xff0c;Vue.js是一种流行的JavaScript框架&#xff0c;用于构建交互式的Web界面。Vue组件是Vue.js中非常重要的概念&#xff0c;它允许我们将UI划分为可重用、独立和功能性的代码块。在Vue.js中&#xff0c;每个组件都有自己的HTML模板、JavaScript逻辑和CSS样…

C++_map与set

目录 一、set 1、set的用法 2、multiset 二、map 1、map的用法 2、map的operator[] 3、multimap 结语 前言&#xff1a; C中的map和set容器属于关联式容器&#xff0c;与序列式容器不同的地方在于&#xff08;序列式容器即vector、list&#xff0c;其底层是由线性数据…

国际光伏展

国际光伏展即国际光伏产业展览会&#xff0c;是全球范围内最具规模和影响力的光伏产业展览会之一。光伏展是一个专门展示和推广光伏技术和产品的平台&#xff0c;汇聚了全球各类光伏企业、研究机构和专家学者&#xff0c;是光伏行业交流、合作和发展的重要场所。 国际光伏展通常…