SparkStreaming在实时处理的两个场景示例

简介

Spark Streaming是Apache Spark生态系统中的一个组件,用于实时流式数据处理。它提供了类似于Spark的API,使开发者可以使用相似的编程模型来处理实时数据流。

Spark Streaming的工作原理是将连续的数据流划分成小的批次,并将每个批次作为RDD(弹性分布式数据集)来处理。这样,开发者可以使用Spark的各种高级功能,如map、reduce、join等,来进行实时数据处理。Spark Streaming还提供了内置的窗口操作、状态管理、容错处理等功能,使得开发者能够轻松处理实时数据的复杂逻辑。

Spark Streaming支持多种数据源,包括Kafka、Flume、HDFS、S3等,因此可以轻松地集成到各种数据管道中。它还能够与Spark的批处理和SQL引擎进行无缝集成,从而实现流式处理与批处理的混合使用。
在这里插入图片描述

本文以 TCP、kafka场景讲解spark streaming的使用

消息队列下的信息铺抓

类似消息队列的有redis、kafka等核心组件。
本文以kafka为例,向kafka中实时抓取数据,

pom.xml中添加以下依赖

<dependencies><!-- Spark Core --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark Streaming --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.2.0</version></dependency><!-- Spark SQL --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.2.0</version></dependency><!-- Kafka --><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.8.0</version></dependency><!-- Spark Streaming Kafka Connector --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming-kafka-0-10_2.12</artifactId><version>3.2.0</version></dependency><!-- PostgreSQL JDBC --><dependency><groupId>org.postgresql</groupId><artifactId>postgresql</artifactId><version>42.2.24</version></dependency>
</dependencies>

创建项目编写以下代码实现功能

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka").setMaster("local[*]").setExecutorEnv("setLogLevel", "ERROR");//设置日志等级为ERROR,避免日志增长导致的磁盘膨胀// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092");kafkaParams.put("key.deserializer", StringDeserializer.class);kafkaParams.put("value.deserializer", StringDeserializer.class);kafkaParams.put("auto.offset.reset", "earliest");// auto.offset.reset可指定参数有// latest:从分区的最新偏移量开始读取消息。// earliest:从分区的最早偏移量开始读取消息。// none:如果没有有效的偏移量,则抛出异常。kafkaParams.put("enable.auto.commit", true);  //采用自动提交offset 的模式kafkaParams.put("auto.commit.interval.ms",2000);//每隔离两秒提交一次commited-offsetkafkaParams.put("group.id", "spark_kafka"); //消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  //订阅kafka);//定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  //将偏移量和value聚合}), schema);// 写入到 PostgreSQLdf.write()//选择写入数据库的模式.mode(SaveMode.Append)//采用追加的写入模式//协议.format("jdbc")//option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL//确定表名.option("dbtable", "public.spark_kafka")//指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在执行代码前,向创建名为spark_kafka的topic

kafka-topics.sh --create --topic spark_kafka --bootstrap-server 10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

向spark_kafka 主题进行随机推数

kafka-producer-perf-test.sh --topic spark_kafka --thrghput 10 --num-records 10000 --record-size 100000 --producer-props bootstrap.servers=10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092

运行过程中消费的offset会一直被提交到每一个分区
在这里插入图片描述

此时在数据库中查看,数据已经实时落地到库中
在这里插入图片描述

TCP

TCP环境下,实时监控日志的输出,可用于监控设备状态、环境变化等。当监测到异常情况时,可以实时发出警报。

package org.example;import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.*;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka010.ConsumerStrategies;
import org.apache.spark.streaming.kafka010.KafkaUtils;
import org.apache.spark.streaming.kafka010.LocationStrategies;
import org.apache.kafka.common.serialization.StringDeserializer;import java.util.*;public class SparkStreamingKafka {public static void main(String[] args) throws InterruptedException {// 创建 Spark 配置SparkConf sparkConf = new SparkConf().setAppName("spark_kafka") // 设置应用程序名称.setMaster("local[*]") // 设置 Spark master 为本地模式,[*]表示使用所有可用核心// 设置日志等级为ERROR,避免日志增长导致的磁盘膨胀.setExecutorEnv("setLogLevel", "ERROR");// 创建 Spark Streaming 上下文JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, new Duration(2000)); // 间隔两秒扑捉一次// 创建 Spark SQL 会话SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();// 设置 Kafka 相关参数Map<String, Object> kafkaParams = new HashMap<>();kafkaParams.put("bootstrap.servers", "10.0.0.105:9092,10.0.0.106:9092,10.0.0.107:9092"); // Kafka 服务器地址kafkaParams.put("key.deserializer", StringDeserializer.class); // key 反序列化器类kafkaParams.put("value.deserializer", StringDeserializer.class); // value 反序列化器类kafkaParams.put("auto.offset.reset", "earliest"); // 从最早的偏移量开始消费消息kafkaParams.put("enable.auto.commit", true);  // 采用自动提交 offset 的模式kafkaParams.put("auto.commit.interval.ms", 2000); // 每隔两秒提交一次 committed-offsetkafkaParams.put("group.id", "spark_kafka"); // 消费组名称// 创建 Kafka streamCollection<String> topics = Collections.singletonList("spark_kafka"); // Kafka 主题名称JavaDStream<ConsumerRecord<String, String>> kafkaStream = KafkaUtils.createDirectStream(streamingContext,LocationStrategies.PreferConsistent(),ConsumerStrategies.Subscribe(topics, kafkaParams)  // 订阅 Kafka);// 定义数据结构StructType schema = new StructType().add("key", DataTypes.LongType).add("value", DataTypes.StringType);kafkaStream.foreachRDD((VoidFunction<JavaRDD<ConsumerRecord<String, String>>>) rdd -> {// 转换为 DataFrameDataset<Row> df = sparkSession.createDataFrame(rdd.map(record -> {return RowFactory.create(record.offset(), record.value());  // 将偏移量和 value 聚合}), schema);// 写入到 PostgreSQLdf.write()// 选择写入数据库的模式.mode(SaveMode.Append) // 采用追加的写入模式// 协议.format("jdbc")// option 参数.option("url", "jdbc:postgresql://localhost:5432/postgres") // PostgreSQL 连接 URL// 确定表名.option("dbtable", "public.spark_kafka") // 指定表名.option("user", "postgres") // PostgreSQL 用户名.option("password", "postgres") // PostgreSQL 密码.save();});// 启动 Spark StreamingstreamingContext.start();// 等待 Spark Streaming 应用程序终止streamingContext.awaitTermination();}
}

在10.0.0.108 打开9999端口键入数值 ,使其被spark接收到并进行运算

nc -lk 9999

开启端口可以键入数值 此时会在IDEA的控制台显示其计算值
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/504282.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

判断点是否在多边形内

std::vector<cv::Point2d> vanCorner_;bool inArea(const Pose &pos) {cv::Point2d point cv::Point2d(pos.position.x(), pos.position.y());double distance cv::pointPolygonTest(vanCorner_, point, false);return distance > 0; } 似乎效果不太好,会误报 …

Go 互斥锁的实现原理?

Go sync包提供了两种锁类型&#xff1a;互斥锁sync.Mutex 和 读写互斥锁sync.RWMutex&#xff0c;都属于悲观锁。 概念 Mutex是互斥锁&#xff0c;当一个 goroutine 获得了锁后&#xff0c;其他 goroutine 不能获取锁&#xff08;只能存在一个写者或读者&#xff0c;不能同时…

现货商品国际挂牌撮合系统功能说明书

现货商品国际挂牌撮合系统功能说明书 一、系统概述 现货商品国际挂牌撮合系统是一个基于互联网技术的电子交易平台&#xff0c;旨在为全球现货商品买卖双方提供高效、透明、公正的撮合服务。该系统通过先进的撮合算法和交易规则&#xff0c;确保交易的快速匹配和成交&#xf…

Netty5 入门HelloWorld

一、客户端代码及关键类说明 /*** netty5的客户端* author -zhengzx-**/ public class ClientSocket {public static void main(String[] args) {//服务类Bootstrap bootstrap new Bootstrap();//workerEventLoopGroup worker new NioEventLoopGroup();try {//设置线程池boo…

基础小白快速入门c语言--

变量&#xff1a; 表面理解&#xff1a;在程序运行期间&#xff0c;可以改变数值的数据&#xff0c; 深层次含义&#xff1a;变量实质上代表了一块儿内存区域&#xff0c;我们可以将变量理解为一块儿内存区域的标识&#xff0c;当我们操作变量时&#xff0c;相当于操作了变量…

leetcode hot100 每日温度

在本题中&#xff0c;我们是通过单调栈来解决的&#xff0c;因为我们采用了栈的数据结构&#xff0c;并且&#xff0c;栈内存储的元素是单调的。 本题我们考虑&#xff0c;将气温数组元素的下标存入栈中&#xff0c;首先初始化要把0放入&#xff0c;0是下标的意思。然后我们拿…

回溯热门问题(算法村第十八关白银挑战)

组合总和 39. 组合总和 - 力扣&#xff08;LeetCode&#xff09; 给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序 返回这…

buuctf misc做题笔记

喵喵喵 使用stegsolve.jar&#xff0c;按BGR顺序提取出一个png图片&#xff0c;是一个只显示一半的二维码&#xff0c;修改图片高度显示全部二维码&#xff0c;解析出一个百度网盘地址&#xff0c;https://pan.baidu.com/s/1pLT2J4f 下载得到压缩包flag.rar。解压成功&#xf…

【JavaEE进阶】 代理模式

文章目录 &#x1f343;前言&#x1f38b;什么叫代理模式&#x1f334;静态代理&#x1f38d;动态代理&#x1f6a9;JDK动态代理&#x1f6a9;CGLIB动态代理 ⭕总结 &#x1f343;前言 前面对Spring AOP的详细使用进行了介绍&#xff0c;这篇博客博主将详细讲解一下Spring AOP…

(面试题)数据结构:链表相交

问题&#xff1a;有两个链表&#xff0c;如何判断是否相交&#xff0c;若相交&#xff0c;找出相交的起始节点 一、介绍 链表相交&#xff1a; 若两个链表相交&#xff0c;则两个链表有共同的节点&#xff0c;那从这个节点之后&#xff0c;后面的节点都会重叠&#xff0c;知道…

怎么把人物从图中抠出?分享几种好用的抠图方法

在日常生活中&#xff0c;我们时常需要将人物从繁杂的背景中优雅地提取出来&#xff0c;无论是为了制作一张精美的证件照&#xff0c;还是为了设计一幅引人注目的海报或宣传画。然而&#xff0c;对于许多非专业人士来说&#xff0c;这仿佛是一场与细节的捉迷藏游戏&#xff0c;…

Laravel Octane 和 Swoole 协程的使用分析二

又仔细研究了下 Octane 源码和 Swoole 的文档&#xff0c;关于前几天 Laravel Octane 和 Swoole 协程的使用分析中的猜想&#xff0c;得到进一步验证&#xff1a; Swoole 的 HTTP Server 启动后会创建一个 master 进程和一个 manager 进程&#xff1b;master 进程又会创建多个…