第二天 Kubernetes落地实践之旅

第二天 Kubernetes落地实践之旅

本章学习kubernetes的架构及工作流程,重点介绍如何使用Workload管理业务应用的生命周期,实现服务不中断的滚动更新,通过服务发现和集群内负载均衡来实现集群内部的服务间访问,并通过ingress实现外部使用域名访问集群内部的服务。

学习过程中会逐步对Django项目做k8s改造,从零开始编写所需的资源文件。通过本章的学习,学员会掌握高可用k8s集群的搭建,同时Django demo项目已经可以利用k8s的控制器、服务发现、负载均衡、配置管理等特性来实现生命周期的管理。

纯容器模式的问题
  1. 业务容器数量庞大,哪些容器部署在哪些节点,使用了哪些端口,如何记录、管理,需要登录到每台机器去管理?
  2. 跨主机通信,多个机器中的容器之间相互调用如何做,iptables规则手动维护?
  3. 跨主机容器间互相调用,配置如何写?写死固定IP+端口?
  4. 如何实现业务高可用?多个容器对外提供服务如何实现负载均衡?
  5. 容器的业务中断了,如何可以感知到,感知到以后,如何自动启动新的容器?
  6. 如何实现滚动升级保证业务的连续性?
容器调度管理平台

Docker Swarm Mesos Google Kubernetes

2017年开始Kubernetes凭借强大的容器集群管理功能, 逐步占据市场,目前在容器编排领域一枝独秀

https://kubernetes.io/

架构图

分布式系统,两类角色:管理节点和工作节点

核心组件
  • ETCD:分布式高性能键值数据库,存储整个集群的所有元数据

  • ApiServer: API服务器,集群资源访问控制入口,提供restAPI及安全访问控制

  • Scheduler:调度器,负责把业务容器调度到最合适的Node节点

  • Controller Manager:控制器管理,确保集群资源按照期望的方式运行

    • Replication Controller
    • Node controller
    • ResourceQuota Controller
    • Namespace Controller
    • ServiceAccount Controller
    • Token Controller
    • Service Controller
    • Endpoints Controller
  • kubelet:运行在每个节点上的主要的“节点代理”,脏活累活

    • pod 管理:kubelet 定期从所监听的数据源获取节点上 pod/container 的期望状态(运行什么容器、运行的副本数量、网络或者存储如何配置等等),并调用对应的容器平台接口达到这个状态。
    • 容器健康检查:kubelet 创建了容器之后还要查看容器是否正常运行,如果容器运行出错,就要根据 pod 设置的重启策略进行处理.
    • 容器监控:kubelet 会监控所在节点的资源使用情况,并定时向 master 报告,资源使用数据都是通过 cAdvisor 获取的。知道整个集群所有节点的资源情况,对于 pod 的调度和正常运行至关重要
  • kube-proxy:维护节点中的iptables或者ipvs规则

  • kubectl: 命令行接口,用于对 Kubernetes 集群运行命令 https://kubernetes.io/zh/docs/reference/kubectl/

工作流程

  1. 用户准备一个资源文件(记录了业务应用的名称、镜像地址等信息),通过调用APIServer执行创建Pod
  2. APIServer收到用户的Pod创建请求,将Pod信息写入到etcd中
  3. 调度器通过list-watch的方式,发现有新的pod数据,但是这个pod还没有绑定到某一个节点中
  4. 调度器通过调度算法,计算出最适合该pod运行的节点,并调用APIServer,把信息更新到etcd中
  5. kubelet同样通过list-watch方式,发现有新的pod调度到本机的节点了,因此调用容器运行时,去根据pod的描述信息,拉取镜像,启动容器,同时生成事件信息
  6. 同时,把容器的信息、事件及状态也通过APIServer写入到etcd中
架构设计的几点思考
  1. 系统各个组件分工明确(APIServer是所有请求入口,CM是控制中枢,Scheduler主管调度,而Kubelet负责运行),配合流畅,整个运行机制一气呵成。
  2. 除了配置管理和持久化组件ETCD,其他组件并不保存数据。意味除ETCD外其他组件都是无状态的。因此从架构设计上对kubernetes系统高可用部署提供了支撑。
  3. 同时因为组件无状态,组件的升级,重启,故障等并不影响集群最终状态,只要组件恢复后就可以从中断处继续运行。
  4. 各个组件和kube-apiserver之间的数据推送都是通过list-watch机制来实现。
实践–集群安装
k8s集群主流安装方式对比分析
  • minikube
  • 二进制安装
  • kubeadm等安装工具

kubeadm https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/kubeadm/

《Kubernetes安装手册(非高可用版)》

核心组件

静态Pod的方式:

## etcd、apiserver、controller-manager、kube-scheduler
$ kubectl -n kube-system get po

systemd服务方式:

$ systemctl status kubelet

kubectl:二进制命令行工具

理解集群资源

组件是为了支撑k8s平台的运行,安装好的软件。

资源是如何去使用k8s的能力的定义。比如,k8s可以使用Pod来管理业务应用,那么Pod就是k8s集群中的一类资源,集群中的所有资源可以提供如下方式查看:

$ kubectl api-resources

如何理解namespace:

命名空间,集群内一个虚拟的概念,类似于资源池的概念,一个池子里可以有各种资源类型,绝大多数的资源都必须属于某一个namespace。集群初始化安装好之后,会默认有如下几个namespace:

$ kubectl get namespaces
NAME                   STATUS   AGE
default                Active   84m
kube-node-lease        Active   84m
kube-public            Active   84m
kube-system            Active   84m
kubernetes-dashboard   Active   71m
  • 所有NAMESPACED的资源,在创建的时候都需要指定namespace,若不指定,默认会在default命名空间下
  • 相同namespace下的同类资源不可以重名,不同类型的资源可以重名
  • 不同namespace下的同类资源可以重名
  • 通常在项目使用的时候,我们会创建带有业务含义的namespace来做逻辑上的整合
kubectl的使用

类似于docker,kubectl是命令行工具,用于与APIServer交互,内置了丰富的子命令,功能极其强大。 https://kubernetes.io/docs/reference/kubectl/overview/

$ kubectl -h
$ kubectl get -h
$ kubectl create -h
$ kubectl create namespace -h
实践–使用k8s管理业务应用
最小调度单元 Pod

docker调度的是容器,在k8s集群中,最小的调度单元是Pod(豆荚)

为什么引入Pod
  • 与容器引擎解耦

    Docker、Rkt。平台设计与引擎的具体的实现解耦

  • 多容器共享网络|存储|进程 空间, 支持的业务场景更加灵活

使用yaml格式定义Pod

myblog/one-pod/pod.yaml

apiVersion: v1
kind: Pod
metadata:name: myblognamespace: luffylabels:component: myblog
spec:containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1env:- name: MYSQL_HOST   #  指定root用户的用户名value: "127.0.0.1"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8ports:- containerPort: 3306env:- name: MYSQL_ROOT_PASSWORDvalue: "123456"- name: MYSQL_DATABASEvalue: "myblog"
{"apiVersion": "v1",		"kind": "Pod","metadata": {"name": "myblog","namespace": "luffy","labels": {"component": "myblog"}},"spec": {"containers": [{"name": "myblog","image": "172.21.51.67:5000/myblog","env": [{"name": "MYSQL_HOST","value": "127.0.0.1"},{"name": "MYSQL_PASSWD","value": "123456"}],"ports": [{"containerPort": 8002}]},{"name": "mysql",...}]}
}
apiVersion含义
alpha进入K8s功能的早期候选版本,可能包含Bug,最终不一定进入K8s
beta已经过测试的版本,最终会进入K8s,但功能、对象定义可能会发生变更。
stable可安全使用的稳定版本
v1stable 版本之后的首个版本,包含了更多的核心对象
apps/v1使用最广泛的版本,像Deployment、ReplicaSets都已进入该版本

资源类型与apiVersion对照表

KindapiVersion
ClusterRoleBindingrbac.authorization.k8s.io/v1
ClusterRolerbac.authorization.k8s.io/v1
ConfigMapv1
CronJobbatch/v1beta1
DaemonSetextensions/v1beta1
Nodev1
Namespacev1
Secretv1
PersistentVolumev1
PersistentVolumeClaimv1
Podv1
Deploymentv1、apps/v1、apps/v1beta1、apps/v1beta2
Servicev1
Ingressextensions/v1beta1
ReplicaSetapps/v1、apps/v1beta2
Jobbatch/v1
StatefulSetapps/v1、apps/v1beta1、apps/v1beta2

快速获得资源和版本

$ kubectl explain pod
$ kubectl explain Pod.apiVersion
创建和访问Pod
## 创建namespace, namespace是逻辑上的资源池
$ kubectl create namespace luffy## 使用指定文件创建Pod
$ kubectl create -f pod.yaml## 查看pod,可以简写po
## 所有的操作都需要指定namespace,如果是在default命名空间下,则可以省略
$ kubectl -n luffy get pods -o wide
NAME     READY   STATUS    RESTARTS   AGE    IP             NODE
myblog   2/2     Running   0          3m     10.244.1.146   k8s-slave1## 使用Pod Ip访问服务,3306和8002
$ curl 10.244.1.146:8002/blog/index/## 进入容器,执行初始化, 不必到对应的主机执行docker exec
$ kubectl -n luffy exec -ti myblog -c myblog bash
/ # env
/ # python3 manage.py migrate
$ kubectl -n luffy exec -ti myblog -c mysql bash
/ # mysql -p123456## 再次访问服务,3306和8002
$ curl 10.244.1.146:8002/blog/index/
Infra容器

登录k8s-slave1节点

$ docker ps -a |grep myblog  ## 发现有三个容器
## 其中包含mysql和myblog程序以及Infra容器
## 为了实现Pod内部的容器可以通过localhost通信,每个Pod都会启动Infra容器,然后Pod内部的其他容器的网络空间会共享该Infra容器的网络空间(Docker网络的container模式),Infra容器只需要hang住网络空间,不需要额外的功能,因此资源消耗极低。## 登录master节点,查看pod内部的容器ip均相同,为pod ip
$ kubectl -n luffy exec -ti myblog -c myblog bash
/ # ifconfig
$ kubectl -n luffy exec -ti myblog -c mysql bash
/ # ifconfig

pod容器命名: k8s_<container_name>_<pod_name>_<namespace>_<random_string>

查看pod详细信息
## 查看pod调度节点及pod_ip
$ kubectl -n luffy get pods -o wide
## 查看完整的yaml
$ kubectl -n luffy get po myblog -o yaml
## 查看pod的明细信息及事件
$ kubectl -n luffy describe pod myblog
Troubleshooting and Debugging
#进入Pod内的容器
$ kubectl -n <namespace> exec <pod_name> -c <container_name> -ti /bin/sh#查看Pod内容器日志,显示标准或者错误输出日志
$ kubectl -n <namespace> logs -f <pod_name> -c <container_name>
更新服务版本
$ kubectl apply -f demo-pod.yaml
删除Pod服务
#根据文件删除
$ kubectl delete -f demo-pod.yaml#根据pod_name删除
$ kubectl -n <namespace> delete pod <pod_name>
Pod数据持久化

若删除了Pod,由于mysql的数据都在容器内部,会造成数据丢失,因此需要数据进行持久化。

  • 定点使用hostpath挂载,nodeSelector定点

    myblog/one-pod/pod-with-volume.yaml

    apiVersion: v1
    kind: Pod
    metadata:name: myblognamespace: luffylabels:component: myblog
    spec:volumes: - name: mysql-datahostPath: path: /opt/mysql/datanodeSelector:   # 使用节点选择器将Pod调度到指定label的节点component: mysqlcontainers:- name: myblogimage: 172.21.51.67:5000/myblog:v1env:- name: MYSQL_HOST   #  指定root用户的用户名value: "127.0.0.1"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8ports:- containerPort: 3306env:- name: MYSQL_ROOT_PASSWORDvalue: "123456"- name: MYSQL_DATABASEvalue: "myblog"volumeMounts:- name: mysql-datamountPath: /var/lib/mysql

    保存文件为pod-with-volume.yaml,执行创建

    ## 若存在旧的同名服务,先删除掉,后创建
    $ kubectl -n luffy delete pod myblog
    ## 创建
    $ kubectl create -f pod-with-volume.yaml## 此时pod状态Pending
    $ kubectl -n luffy get po
    NAME     READY   STATUS    RESTARTS   AGE
    myblog   0/2     Pending   0          32s## 查看原因,提示调度失败,因为节点不满足node selector
    $ kubectl -n luffy describe po myblog
    Events:Type     Reason            Age                From               Message----     ------            ----               ----               -------Warning  FailedScheduling  12s (x2 over 12s)  default-scheduler  0/3 nodes are available: 3 node(s) didn't match node selector.## 为节点打标签
    $ kubectl label node k8s-slave1 component=mysql## 再次查看,已经运行成功
    $ kubectl -n luffy get po
    NAME     READY   STATUS    RESTARTS   AGE     IP             NODE
    myblog   2/2     Running   0          3m54s   10.244.1.150   k8s-slave1## 到k8s-slave1节点,查看/opt/mysql/data
    $ ll /opt/mysql/data/
    total 188484
    -rw-r----- 1 polkitd input       56 Mar 29 09:20 auto.cnf
    -rw------- 1 polkitd input     1676 Mar 29 09:20 ca-key.pem
    -rw-r--r-- 1 polkitd input     1112 Mar 29 09:20 ca.pem
    drwxr-x--- 2 polkitd input     8192 Mar 29 09:20 sys
    ...## 执行migrate,创建数据库表,然后删掉pod,再次创建后验证数据是否存在
    $ kubectl -n luffy exec -ti myblog python3 manage.py migrate## 访问服务,正常
    $ curl 10.244.1.150:8002/blog/index/ ## 删除pod
    $ kubectl delete -f pod-with-volume.yaml## 再次创建Pod
    $ kubectl create -f pod-with-volume.yaml## 查看pod ip并访问服务
    $ kubectl -n luffy get po -o wide
    NAME     READY   STATUS    RESTARTS   AGE   IP             NODE  
    myblog   2/2     Running   0          7s    10.244.1.151   k8s-slave1## 未重新做migrate,服务正常
    $ curl 10.244.1.151:8002/blog/index/
  • 使用PV+PVC连接分布式存储解决方案

    • ceph
    • glusterfs
    • nfs
服务健康检查

检测容器服务是否健康的手段,若不健康,会根据设置的重启策略(restartPolicy)进行操作,两种检测机制可以分别单独设置,若不设置,默认认为Pod是健康的。

两种机制:

  • LivenessProbe探针
    存活性探测:用于判断容器是否存活,即Pod是否为running状态,如果LivenessProbe探针探测到容器不健康,则kubelet将kill掉容器,并根据容器的重启策略是否重启,如果一个容器不包含LivenessProbe探针,则Kubelet认为容器的LivenessProbe探针的返回值永远成功。

    ...containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1livenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 10 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间
    ...
    

  • ReadinessProbe探针
    可用性探测:用于判断容器是否正常提供服务,即容器的Ready是否为True,是否可以接收请求,如果ReadinessProbe探测失败,则容器的Ready将为False, Endpoint Controller 控制器将此Pod的Endpoint从对应的service的Endpoint列表中移除,不再将任何请求调度此Pod上,直到下次探测成功。(剔除此pod不参与接收请求不会将流量转发给此Pod)。

    ...containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 10
    ...

三种类型:

  • exec:通过执行命令来检查服务是否正常,返回值为0则表示容器健康
  • httpGet方式:通过发送http请求检查服务是否正常,返回200-399状态码则表明容器健康
  • tcpSocket:通过容器的IP和Port执行TCP检查,如果能够建立TCP连接,则表明容器健康

示例:

完整文件路径 myblog/one-pod/pod-with-healthcheck.yaml

  containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1env:- name: MYSQL_HOST   #  指定root用户的用户名value: "127.0.0.1"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002livenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 10 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 10
  • initialDelaySeconds:容器启动后第一次执行探测时需要等待多少秒。
  • periodSeconds:执行探测的频率。默认是10秒,最小1秒。
  • timeoutSeconds:探测超时时间。默认1秒,最小1秒。
  • successThreshold:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1。
  • failureThreshold:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3,最小值是1。

K8S将在Pod开始启动10s(initialDelaySeconds)后利用HTTP访问8002端口的/blog/index/,如果超过2s或者返回码不在200~399内,则健康检查失败

重启策略

Pod的重启策略(RestartPolicy)应用于Pod内的所有容器,并且仅在Pod所处的Node上由kubelet进行判断和重启操作。当某个容器异常退出或者健康检查失败时,kubelet将根据RestartPolicy的设置来进行相应的操作。
Pod的重启策略包括Always、OnFailure和Never,默认值为Always。

  • Always:当容器进程退出后,由kubelet自动重启该容器;
  • OnFailure:当容器终止运行且退出码不为0时,由kubelet自动重启该容器;
  • Never:不论容器运行状态如何,kubelet都不会重启该容器。

演示重启策略:

apiVersion: v1
kind: Pod
metadata:name: test-restart-policy
spec:restartPolicy: OnFailurecontainers:- name: busyboximage: busyboxargs:- /bin/sh- -c- sleep 10 && exit 0
  1. 使用默认的重启策略,即 restartPolicy: Always ,无论容器是否是正常退出,都会自动重启容器
  2. 使用OnFailure的策略时
    • 如果把exit 1,去掉,即让容器的进程正常退出的话,则不会重启
    • 只有非正常退出状态才会重启
  3. 使用Never时,退出了就不再重启

可以看出,若容器正常退出,Pod的状态会是Completed,非正常退出,状态为CrashLoopBackOff

镜像拉取策略
spec:containers:- name: myblogimage: 172.21.51.67:5000/demo/myblogimagePullPolicy: IfNotPresent

设置镜像的拉取策略,默认为IfNotPresent

  • Always,总是拉取镜像,即使本地有镜像也从仓库拉取
  • IfNotPresent ,本地有则使用本地镜像,本地没有则去仓库拉取
  • Never,只使用本地镜像,本地没有则报错
Pod资源限制

为了保证充分利用集群资源,且确保重要容器在运行周期内能够分配到足够的资源稳定运行,因此平台需要具备

Pod的资源限制的能力。 对于一个pod来说,资源最基础的2个的指标就是:CPU和内存。

Kubernetes提供了个采用requests和limits 两种类型参数对资源进行预分配和使用限制。

完整文件路径:myblog/one-pod/pod-with-resourcelimits.yaml

...containers:- name: myblogimage: 172.21.51.67:5000/myblogenv:- name: MYSQL_HOST   #  指定root用户的用户名value: "127.0.0.1"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100m
...

requests:

  • 容器使用的最小资源需求,作用于schedule阶段,作为容器调度时资源分配的判断依赖
  • 只有当前节点上可分配的资源量 >= request 时才允许将容器调度到该节点
  • request参数不限制容器的最大可使用资源
  • requests.cpu被转成docker的–cpu-shares参数,与cgroup cpu.shares功能相同 (无论宿主机有多少个cpu或者内核,–cpu-shares选项都会按照比例分配cpu资源)
  • requests.memory没有对应的docker参数,仅作为k8s调度依据

limits:

  • 容器能使用资源的最大值
  • 设置为0表示对使用的资源不做限制, 可无限的使用
  • 当pod 内存超过limit时,会被oom
  • 当cpu超过limit时,不会被kill,但是会限制不超过limit值
  • limits.cpu会被转换成docker的–cpu-quota参数。与cgroup cpu.cfs_quota_us功能相同
  • limits.memory会被转换成docker的–memory参数。用来限制容器使用的最大内存

对于 CPU,我们知道计算机里 CPU 的资源是按“时间片”的方式来进行分配的,系统里的每一个操作都需要 CPU 的处理,所以,哪个任务要是申请的 CPU 时间片越多,那么它得到的 CPU 资源就越多。

然后还需要了解下 CGroup 里面对于 CPU 资源的单位换算:

1 CPU =  1000 millicpu(1 Core = 1000m)

这里的 m 就是毫、毫核的意思,Kubernetes 集群中的每一个节点可以通过操作系统的命令来确认本节点的 CPU 内核数量,然后将这个数量乘以1000,得到的就是节点总 CPU 总毫数。比如一个节点有四核,那么该节点的 CPU 总毫量为 4000m。

docker run命令和 CPU 限制相关的所有选项如下:

选项描述
--cpuset-cpus=""允许使用的 CPU 集,值可以为 0-3,0,1
-c,--cpu-shares=0CPU 共享权值(相对权重)
cpu-period=0限制 CPU CFS 的周期,范围从 100ms~1s,即[1000, 1000000]
--cpu-quota=0限制 CPU CFS 配额,必须不小于1ms,即 >= 1000,绝对限制
docker run -it --cpu-period=50000 --cpu-quota=25000 ubuntu:16.04 /bin/bash

将 CFS 调度的周期设为 50000,将容器在每个周期内的 CPU 配额设置为 25000,表示该容器每 50ms 可以得到 50% 的 CPU 运行时间。

注意:若内存使用超出限制,会引发系统的OOM机制,因CPU是可压缩资源,不会引发Pod退出或重建

yaml优化

目前完善后的yaml,myblog/one-pod/pod-completed.yaml

apiVersion: v1
kind: Pod
metadata:name: myblognamespace: luffylabels:component: myblog
spec:volumes: - name: mysql-datahostPath: path: /opt/mysql/datanodeSelector:   # 使用节点选择器将Pod调度到指定label的节点component: mysqlcontainers:- name: myblogimage: 172.21.51.67:5000/myblog:v1env:- name: MYSQL_HOST   #  指定root用户的用户名value: "127.0.0.1"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mlivenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 15 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 15- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8ports:- containerPort: 3306env:- name: MYSQL_ROOT_PASSWORDvalue: "123456"- name: MYSQL_DATABASEvalue: "myblog"resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mreadinessProbe:tcpSocket:port: 3306initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 3306initialDelaySeconds: 15periodSeconds: 20volumeMounts:- name: mysql-datamountPath: /var/lib/mysql

为什么要优化

  • 考虑真实的使用场景,像数据库这类中间件,是作为公共资源,为多个项目提供服务,不适合和业务容器绑定在同一个Pod中,因为业务容器是经常变更的,而数据库不需要频繁迭代
  • yaml的环境变量中存在敏感信息(账号、密码),存在安全隐患

解决问题一,需要拆分yaml

myblog/two-pod/mysql.yaml

apiVersion: v1
kind: Pod
metadata:name: mysqlnamespace: luffylabels:component: mysql
spec:hostNetwork: true	# 声明pod的网络模式为host模式,效果同docker run --net=hostvolumes: - name: mysql-datahostPath: path: /opt/mysql/datanodeSelector:   # 使用节点选择器将Pod调度到指定label的节点component: mysqlcontainers:- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8ports:- containerPort: 3306env:- name: MYSQL_ROOT_PASSWORDvalue: "123456"- name: MYSQL_DATABASEvalue: "myblog"resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mreadinessProbe:tcpSocket:port: 3306initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 3306initialDelaySeconds: 15periodSeconds: 20volumeMounts:- name: mysql-datamountPath: /var/lib/mysql

myblog.yaml

apiVersion: v1
kind: Pod
metadata:name: myblognamespace: luffylabels:component: myblog
spec:containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1imagePullPolicy: IfNotPresentenv:- name: MYSQL_HOST   #  指定root用户的用户名value: "172.21.51.68"- name: MYSQL_PASSWDvalue: "123456"ports:- containerPort: 8002resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mlivenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 15 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 15

创建测试

## 先删除旧pod
$ kubectl -n luffy delete po myblog## 分别创建mysql和myblog
$ kubectl create -f mysql.yaml
$ kubectl create -f myblog.yaml## 查看pod,注意mysqlIP为宿主机IP,因为网络模式为host
$ kubectl -n luffy get po -o wide 
NAME     READY   STATUS    RESTARTS   AGE   IP                NODE
myblog   1/1     Running   0          41s   10.244.1.152      k8s-slave1
mysql    1/1     Running   0          52s   172.21.51.68   k8s-slave1## 访问myblog服务正常
$ curl 10.244.1.152:8002/blog/index/

解决问题二,环境变量中敏感信息带来的安全隐患

为什么要统一管理环境变量

  • 环境变量中有很多敏感的信息,比如账号密码,直接暴漏在yaml文件中存在安全性问题
  • 团队内部一般存在多个项目,这些项目直接存在配置相同环境变量的情况,因此可以统一维护管理
  • 对于开发、测试、生产环境,由于配置均不同,每套环境部署的时候都要修改yaml,带来额外的开销

k8s提供两类资源,configMap和Secret,可以用来实现业务配置的统一管理, 允许将配置文件与镜像文件分离,以使容器化的应用程序具有可移植性 。

  • configMap,通常用来管理应用的配置文件或者环境变量,myblog/two-pod/configmap.yaml

    apiVersion: v1
    kind: ConfigMap
    metadata:name: myblognamespace: luffy
    data:MYSQL_HOST: "172.21.51.68"MYSQL_PORT: "3306"

    创建并查看configMap:

    $ kubectl create -f configmap.yaml
    $ kubectl -n luffy get cm myblog -oyaml

    或者可以使用命令的方式,从文件中创建,比如:

    configmap.txt

    $ cat configmap.txt
    MYSQL_HOST=172.21.51.68
    MYSQL_PORT=3306
    $ kubectl create configmap myblog --from-env-file=configmap.txt
  • Secret,管理敏感类的信息,默认会base64编码存储,有三种类型

    • Service Account :用来访问Kubernetes API,由Kubernetes自动创建,并且会自动挂载到Pod的/run/secrets/kubernetes.io/serviceaccount目录中;创建ServiceAccount后,Pod中指定serviceAccount后,自动创建该ServiceAccount对应的secret;
    • Opaque : base64编码格式的Secret,用来存储密码、密钥等;
    • kubernetes.io/dockerconfigjson :用来存储私有docker registry的认证信息。

    myblog/two-pod/secret.yaml

    apiVersion: v1
    kind: Secret
    metadata:name: myblognamespace: luffy
    type: Opaque
    data:MYSQL_USER: cm9vdA==		#注意加-n参数, echo -n root|base64MYSQL_PASSWD: MTIzNDU2

    创建并查看:

    $ kubectl create -f secret.yaml
    $ kubectl -n luffy get secret

    如果不习惯这种方式,可以通过如下方式:

    $ cat secret.txt
    MYSQL_USER=root
    MYSQL_PASSWD=123456
    $ kubectl -n luffy create secret generic myblog --from-env-file=secret.txt 

修改后的mysql的yaml,资源路径:myblog/two-pod/mysql-with-config.yaml

...
spec:containers:- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8env:- name: MYSQL_USERvalueFrom:secretKeyRef:name: myblogkey: MYSQL_USER- name: MYSQL_ROOT_PASSWORDvalueFrom:secretKeyRef:name: myblogkey: MYSQL_PASSWD- name: MYSQL_DATABASEvalue: "myblog"
...

整体修改后的myblog的yaml,资源路径:myblog/two-pod/myblog-with-config.yaml

apiVersion: v1
kind: Pod
metadata:name: myblognamespace: luffylabels:component: myblog
spec:containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1imagePullPolicy: IfNotPresentenv:- name: MYSQL_HOSTvalueFrom:configMapKeyRef:name: myblogkey: MYSQL_HOST- name: MYSQL_PORTvalueFrom:configMapKeyRef:name: myblogkey: MYSQL_PORT- name: MYSQL_USERvalueFrom:secretKeyRef:name: myblogkey: MYSQL_USER- name: MYSQL_PASSWDvalueFrom:secretKeyRef:name: myblogkey: MYSQL_PASSWDports:- containerPort: 8002resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mlivenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 15 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 15

在部署不同的环境时,pod的yaml无须再变化,只需要在每套环境中维护一套ConfigMap和Secret即可。但是注意configmap和secret不能跨namespace使用,且更新后,pod内的env不会自动更新,重建后方可更新。

如何编写资源yaml
  1. 拿来主义,从机器中已有的资源中拿

    $ kubectl -n kube-system get po,deployment,ds
    
  2. 学会在官网查找, https://kubernetes.io/docs/home/

  3. 从kubernetes-api文档中查找, https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.16/#pod-v1-core

  4. kubectl explain 查看具体字段含义

pod状态与生命周期

Pod的状态如下表所示:

状态值描述
PendingAPI Server已经创建该Pod,等待调度器调度
ContainerCreating拉取镜像启动容器中
RunningPod内容器均已创建,且至少有一个容器处于运行状态、正在启动状态或正在重启状态
Succeeded|CompletedPod内所有容器均已成功执行退出,且不再重启
Failed|ErrorPod内所有容器均已退出,但至少有一个容器退出为失败状态
CrashLoopBackOffPod内有容器启动失败,比如配置文件丢失导致主进程启动失败
Unknown由于某种原因无法获取该Pod的状态,可能由于网络通信不畅导致

生命周期示意图:

启动和关闭示意:

初始化容器:

  • 验证业务应用依赖的组件是否均已启动
  • 修改目录的权限
  • 调整系统参数
...initContainers:- command:- /sbin/sysctl- -w- vm.max_map_count=262144image: alpine:3.6imagePullPolicy: IfNotPresentname: elasticsearch-logging-initresources: {}securityContext:privileged: true- name: fix-permissionsimage: alpine:3.6command: ["sh", "-c", "chown -R 1000:1000 /usr/share/elasticsearch/data"]securityContext:privileged: truevolumeMounts:- name: elasticsearch-loggingmountPath: /usr/share/elasticsearch/data
...

验证Pod生命周期:

apiVersion: v1
kind: Pod
metadata:name: demo-start-stopnamespace: luffylabels:component: demo-start-stop
spec:initContainers:- name: initimage: busyboxcommand: ['sh', '-c', 'echo $(date +%s): INIT >> /loap/timing']volumeMounts:- mountPath: /loapname: timingcontainers:- name: mainimage: busyboxcommand: ['sh', '-c', 'echo $(date +%s): START >> /loap/timing;
sleep 10; echo $(date +%s): END >> /loap/timing;']volumeMounts:- mountPath: /loap name: timinglivenessProbe:exec:command: ['sh', '-c', 'echo $(date +%s): LIVENESS >> /loap/timing']readinessProbe:exec:command: ['sh', '-c', 'echo $(date +%s): READINESS >> /loap/timing']lifecycle:postStart:exec:command: ['sh', '-c', 'echo $(date +%s): POST-START >> /loap/timing']preStop:exec:command: ['sh', '-c', 'echo $(date +%s): PRE-STOP >> /loap/timing']volumes:- name: timinghostPath:path: /tmp/loap

创建pod测试:

$ kubectl create -f demo-pod-start.yaml## 查看demo状态
$ kubectl -n luffy get po -o wide -w## 查看调度节点的/tmp/loap/timing
$ cat /tmp/loap/timing
1585424708: INIT
1585424746: START
1585424746: POST-START
1585424754: READINESS
1585424756: LIVENESS
1585424756: END

须主动杀掉 Pod 才会触发 pre-stop hook,如果是 Pod 自己 Down 掉,则不会执行 pre-stop hook

小结
  1. 实现k8s平台与特定的容器运行时解耦,提供更加灵活的业务部署方式,引入了Pod概念
  2. k8s使用yaml格式定义资源文件,yaml中Map与List的语法,与json做类比
  3. 通过kubectl create | get | exec | logs | delete 等操作k8s资源,必须指定namespace
  4. 每启动一个Pod,为了实现网络空间共享,会先创建Infra容器,并把其他容器网络加入该容器
  5. 通过livenessProbe和readinessProbe实现Pod的存活性和就绪健康检查
  6. 通过requests和limit分别限定容器初始资源申请与最高上限资源申请
  7. Pod通过initContainer和lifecycle分别来执行初始化、pod启动和删除时候的操作,使得功能更加全面和灵活
  8. 编写yaml讲究方法,学习k8s,养成从官方网站查询知识的习惯

做了哪些工作:

  1. 定义Pod.yaml,将myblog和mysql打包在同一个Pod中,使用myblog使用localhost访问mysql
  2. mysql数据持久化,为myblog业务应用添加了健康检查和资源限制
  3. 将myblog与mysql拆分,使用独立的Pod管理
  4. yaml文件中的环境变量存在账号密码明文等敏感信息,使用configMap和Secret来统一配置,优化部署

只使用Pod, 面临的问题:

  1. 业务应用启动多个副本
  2. Pod重建后IP会变化,外部如何访问Pod服务
  3. 运行业务Pod的某个节点挂了,可以自动帮我把Pod转移到集群中的可用节点启动起来
  4. 我的业务应用功能是收集节点监控数据,需要把Pod运行在k8集群的各个节点上
Pod控制器
Workload (工作负载)

控制器又称工作负载是用于实现管理pod的中间层,确保pod资源符合预期的状态,pod的资源出现故障时,会尝试 进行重启,当根据重启策略无效,则会重新新建pod的资源。

  • ReplicaSet: 代用户创建指定数量的pod副本数量,确保pod副本数量符合预期状态,并且支持滚动式自动扩容和缩容功能
  • Deployment:工作在ReplicaSet之上,用于管理无状态应用,目前来说最好的控制器。支持滚动更新和回滚功能,提供声明式配置
  • DaemonSet:用于确保集群中的每一个节点只运行特定的pod副本,通常用于实现系统级后台任务。比如EFK服务
  • Job:只要完成就立即退出,不需要重启或重建
  • Cronjob:周期性任务控制,不需要持续后台运行
  • StatefulSet:管理有状态应用
Deployment

myblog/deployment/deploy-mysql.yaml

apiVersion: apps/v1
kind: Deployment
metadata:name: mysqlnamespace: luffy
spec:replicas: 1	#指定Pod副本数selector:		#指定Pod的选择器matchLabels:app: mysqltemplate:metadata:labels:	#给Pod打labelapp: mysqlspec:volumes: - name: mysql-datahostPath: path: /opt/mysql/datanodeSelector:   # 使用节点选择器将Pod调度到指定label的节点component: mysqlcontainers:- name: mysqlimage: 172.21.51.67:5000/mysql:5.7-utf8ports:- containerPort: 3306env:- name: MYSQL_USERvalueFrom:secretKeyRef:name: myblogkey: MYSQL_USER- name: MYSQL_ROOT_PASSWORDvalueFrom:secretKeyRef:name: myblogkey: MYSQL_PASSWD- name: MYSQL_DATABASEvalue: "myblog"resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mreadinessProbe:tcpSocket:port: 3306initialDelaySeconds: 5periodSeconds: 10livenessProbe:tcpSocket:port: 3306initialDelaySeconds: 15periodSeconds: 20volumeMounts:- name: mysql-datamountPath: /var/lib/mysql

deploy-myblog.yaml:

apiVersion: apps/v1
kind: Deployment
metadata:name: myblognamespace: luffy
spec:replicas: 1	#指定Pod副本数selector:		#指定Pod的选择器matchLabels:app: myblogtemplate:metadata:labels:	#给Pod打labelapp: myblogspec:containers:- name: myblogimage: 172.21.51.67:5000/myblog:v1imagePullPolicy: IfNotPresentenv:- name: MYSQL_HOSTvalueFrom:configMapKeyRef:name: myblogkey: MYSQL_HOST- name: MYSQL_PORTvalueFrom:configMapKeyRef:name: myblogkey: MYSQL_PORT- name: MYSQL_USERvalueFrom:secretKeyRef:name: myblogkey: MYSQL_USER- name: MYSQL_PASSWDvalueFrom:secretKeyRef:name: myblogkey: MYSQL_PASSWDports:- containerPort: 8002resources:requests:memory: 100Micpu: 50mlimits:memory: 500Micpu: 100mlivenessProbe:httpGet:path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10  # 容器启动后第一次执行探测是需要等待多少秒periodSeconds: 15 	# 执行探测的频率timeoutSeconds: 2		# 探测超时时间readinessProbe: httpGet: path: /blog/index/port: 8002scheme: HTTPinitialDelaySeconds: 10 timeoutSeconds: 2periodSeconds: 15
创建Deployment
$ kubectl create -f deploy.yaml
查看Deployment
# kubectl api-resources
$ kubectl -n luffy get deploy
NAME     READY   UP-TO-DATE   AVAILABLE   AGE
myblog   1/1     1            1           2m22s
mysql    1/1     1            1           2d11h* `NAME` 列出了集群中 Deployments 的名称。* `READY`显示当前正在运行的副本数/期望的副本数。* `UP-TO-DATE`显示已更新以实现期望状态的副本数。* `AVAILABLE`显示应用程序可供用户使用的副本数。* `AGE` 显示应用程序运行的时间量。# 查看pod
$ kubectl -n luffy get po
NAME                      READY   STATUS    RESTARTS   AGE
myblog-7c96c9f76b-qbbg7   1/1     Running   0          109s
mysql-85f4f65f99-w6jkj    1/1     Running   0          2m28s# 查看replicaSet
$ kubectl -n luffy get rs
副本保障机制

controller实时检测pod状态,并保障副本数一直处于期望的值。

## 删除pod,观察pod状态变化
$ kubectl -n luffy delete pod myblog-7c96c9f76b-qbbg7# 观察pod
$ kubectl get pods -o wide## 设置两个副本, 或者通过kubectl -n luffy edit deploy myblog的方式,最好通过修改文件,然后apply的方式,这样yaml文件可以保持同步
$ kubectl -n luffy scale deploy myblog --replicas=2
deployment.extensions/myblog scaled# 观察pod
$ kubectl get pods -o wide
NAME                      READY   STATUS    RESTARTS   AGE
myblog-7c96c9f76b-qbbg7   1/1     Running   0          11m
myblog-7c96c9f76b-s6brm   1/1     Running   0          55s
mysql-85f4f65f99-w6jkj    1/1     Running   0          11m
Pod驱逐策略

K8S 有个特色功能叫 pod eviction,它在某些场景下如节点 NotReady,或者资源不足时,把 pod 驱逐至其它节点,这也是出于业务保护的角度去考虑的。

  1. Kube-controller-manager: 周期性检查所有节点状态,当节点处于 NotReady 状态超过一段时间后,驱逐该节点上所有 pod。
  • pod-eviction-timeout:NotReady 状态节点超过该时间后,执行驱逐,默认 5 min,适用于k8s 1.13版本之前

    • 1.13版本后,集群开启 TaintBasedEvictions 与TaintNodesByCondition 功能,即taint-based-evictions,即节点若失联或者出现各种异常情况,k8s会自动为node打上污点,同时为pod默认添加如下容忍设置:

        tolerations:- effect: NoExecutekey: node.kubernetes.io/not-readyoperator: ExiststolerationSeconds: 300- effect: NoExecutekey: node.kubernetes.io/unreachableoperator: ExiststolerationSeconds: 300
      

      即各pod可以独立设置驱逐容忍时间。

  1. Kubelet: 周期性检查本节点资源,当资源不足时,按照优先级驱逐部分 pod
    • memory.available:节点可用内存
    • nodefs.available:节点根盘可用存储空间
    • nodefs.inodesFree:节点inodes可用数量
    • imagefs.available:镜像存储盘的可用空间
    • imagefs.inodesFree:镜像存储盘的inodes可用数量
服务更新

修改服务,重新打tag模拟服务更新。

更新方式:

  1. 修改yaml文件,使用kubectl apply -f deploy-myblog.yaml来应用更新

  2. kubectl -n luffy edit deploy myblog在线更新

  3. kubectl -n luffy set image deploy myblog myblog=172.21.51.67:5000/myblog:v2 --record

修改文件测试:

$ vi mybolg/blog/template/index.html$ docker build . -t 172.21.51.67:5000/myblog:v2 -f Dockerfile
$ docker push 172.21.51.67:5000/myblog:v2
更新策略
...
spec:replicas: 2	#指定Pod副本数selector:		#指定Pod的选择器matchLabels:app: myblogstrategy:rollingUpdate:maxSurge: 1maxUnavailable: 25%type: RollingUpdate		#指定更新方式为滚动更新,默认策略,通过get deploy yaml查看...

策略控制:

  • maxSurge:最大激增数, 指更新过程中, 最多可以比replicas预先设定值多出的pod数量, 可以为固定值或百分比,默认为desired Pods数的25%。计算时向上取整(比如3.4,取4),更新过程中最多会有replicas + maxSurge个pod
  • maxUnavailable: 指更新过程中, 最多有几个pod处于无法服务状态 , 可以为固定值或百分比,默认为desired Pods数的25%。计算时向下取整(比如3.6,取3)

在Deployment rollout时,需要保证Available(Ready) Pods数不低于 desired pods number - maxUnavailable; 保证所有的非异常状态Pods数不多于 desired pods number + maxSurge

replicas=3

running状态pod最大不超过3+1=4个,

running状态的Pod数不低于3-0=3个

  1. 先新增一个v2版本的pod,目前3个v1版本+1个v2版本,共4个pod
  2. 删掉一个v1版本的pod,目前2个v1版本+1个v2版本,共3个pod
  3. 先新增一个v2版本的pod,目前2个v1版本+2个v2版本,共4个pod
  4. 删掉一个v1版本的pod,目前1个v1版本+2个v2版本,共3个pod
  5. 先新增一个v2版本的pod,目前1个v1版本+3个v2版本,共4个pod
  6. 删掉一个v1版本的pod,目前0个v1版本+3个v2版本,共3个pod

以myblog为例,使用默认的策略,更新过程:

  1. maxSurge 25%,2个实例,向上取整,则maxSurge为1,意味着最多可以有2+1=3个Pod,那么此时会新创建1个ReplicaSet,RS-new,把副本数置为1,此时呢,副本控制器就去创建这个新的Pod
  2. 同时,maxUnavailable是25%,副本数2*25%,向下取整,则为0,意味着,滚动更新的过程中,不能有少于2个可用的Pod,因此,旧的Replica(RS-old)会先保持不动,等RS-new管理的Pod状态Ready后,此时已经有3个Ready状态的Pod了,那么由于只要保证有2个可用的Pod即可,因此,RS-old的副本数会有2个变成1个,此时,会删掉一个旧的Pod
  3. 删掉旧的Pod的时候,由于总的Pod数量又变成2个了,因此,距离最大的3个还有1个Pod可以创建,所以,RS-new把管理的副本数由1改成2,此时又会创建1个新的Pod,等RS-new管理了2个Pod都ready后,那么就可以把RS-old的副本数由1置为0了,这样就完成了滚动更新
#查看滚动更新事件
$ kubectl -n luffy describe deploy myblog
...
Events:Type    Reason             Age   From                   Message----    ------             ----  ----                   -------Normal  ScalingReplicaSet  11s   deployment-controller  Scaled up replica set myblog-6cf56fc848 to 1Normal  ScalingReplicaSet  11s   deployment-controller  Scaled down replica set myblog-6fdcf98f9 to 1Normal  ScalingReplicaSet  11s   deployment-controller  Scaled up replica set myblog-6cf56fc848 to 2Normal  ScalingReplicaSet  6s    deployment-controller  Scaled down replica set myblog-6fdcf98f9 to 0
$ kubectl get rs
NAME                     DESIRED   CURRENT   READY   AGE
myblog-6cf56fc848   2         2         2       16h
myblog-6fdcf98f9    0         0         0       16h
服务回滚

通过滚动升级的策略可以平滑的升级Deployment,若升级出现问题,需要最快且最好的方式回退到上一次能够提供正常工作的版本。为此K8S提供了回滚机制。

revision:更新应用时,K8S都会记录当前的版本号,即为revision,当升级出现问题时,可通过回滚到某个特定的revision,默认配置下,K8S只会保留最近的几个revision,可以通过Deployment配置文件中的spec.revisionHistoryLimit属性增加revision数量,默认是10。

查看当前:

$ kubectl -n luffy rollout history deploy myblog ##CHANGE-CAUSE为空
$ kubectl delete -f deploy-myblog.yaml    ## 方便演示到具体效果,删掉已有deployment

记录回滚:

$ kubectl create -f deploy-myblog.yaml --record$ kubectl -n luffy set image deploy myblog myblog=172.21.51.67:5000/myblog:v2 --record=true

查看deployment更新历史:

$ kubectl -n luffy rollout history deploy myblog
deployment.extensions/myblog
REVISION  CHANGE-CAUSE
1         kubectl create --filename=deploy-myblog.yaml --record=true
2         kubectl set image deploy myblog myblog=172.21.51.67:5000/demo/myblog:v1 --record=true

回滚到具体的REVISION:

$ kubectl -n luffy rollout undo deploy myblog --to-revision=1
deployment.extensions/myblog rolled back# 访问应用测试
Kubernetes服务访问之Service

通过以前的学习,我们已经能够通过Deployment来创建一组Pod来提供具有高可用性的服务。虽然每个Pod都会分配一个单独的Pod IP,然而却存在如下两个问题:

  • Pod IP仅仅是集群内可见的虚拟IP,外部无法访问。
  • Pod IP会随着Pod的销毁而消失,当ReplicaSet对Pod进行动态伸缩时,Pod IP可能随时随地都会变化,这样对于我们访问这个服务带来了难度。
Service 负载均衡之Cluster IP

service是一组pod的服务抽象,相当于一组pod的LB,负责将请求分发给对应的pod。service会为这个LB提供一个IP,一般称为cluster IP 。使用Service对象,通过selector进行标签选择,找到对应的Pod:

myblog/deployment/svc-myblog.yaml

apiVersion: v1
kind: Service
metadata:name: myblognamespace: luffy
spec:ports:- port: 80protocol: TCPtargetPort: 8002selector:app: myblogtype: ClusterIP

操作演示:

## 别名
$ alias kd='kubectl -n luffy'## 创建服务
$ kd create -f svc-myblog.yaml
$ kd get po --show-labels
NAME                      READY   STATUS    RESTARTS   AGE    LABELS
myblog-5c97d79cdb-jn7km   1/1     Running   0          6m5s   app=myblog
mysql-85f4f65f99-w6jkj    1/1     Running   0          176m   app=mysql$ kd get svc
NAME     TYPE        CLUSTER-IP     EXTERNAL-IP   PORT(S)   AGE
myblog   ClusterIP   10.99.174.93   <none>        80/TCP    7m50s$ kd describe svc myblog
Name:              myblog
Namespace:         demo
Labels:            <none>
Annotations:       <none>
Selector:          app=myblog
Type:              ClusterIP
IP:                10.99.174.93
Port:              <unset>  80/TCP
TargetPort:        8002/TCP
Endpoints:         10.244.0.68:8002
Session Affinity:  None
Events:            <none>## 扩容myblog服务
$ kd scale deploy myblog --replicas=2
deployment.extensions/myblog scaled## 再次查看
$ kd describe svc myblog
Name:              myblog
Namespace:         demo
Labels:            <none>
Annotations:       <none>
Selector:          app=myblog
Type:              ClusterIP
IP:                10.99.174.93
Port:              <unset>  80/TCP
TargetPort:        8002/TCP
Endpoints:         10.244.0.68:8002,10.244.1.158:8002
Session Affinity:  None
Events:            <none>

Service与Pod如何关联:

service对象创建的同时,会创建同名的endpoints对象,若服务设置了readinessProbe, 当readinessProbe检测失败时,endpoints列表中会剔除掉对应的pod_ip,这样流量就不会分发到健康检测失败的Pod中

$ kd get endpoints myblog
NAME     ENDPOINTS                            AGE
myblog   10.244.0.68:8002,10.244.1.158:8002   7m

Service Cluster-IP如何访问:

$ kd get svc myblog
NAME   TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)   AGE
myblog   ClusterIP   10.99.174.93   <none>        80/TCP    13m
$ curl 10.99.174.93/blog/index/

为mysql服务创建service:

apiVersion: v1
kind: Service
metadata:name: mysqlnamespace: luffy
spec:ports:- port: 3306protocol: TCPtargetPort: 3306selector:app: mysqltype: ClusterIP

访问mysql:

$ kd get svc mysql
mysql    ClusterIP   10.108.214.84   <none>        3306/TCP   3s
$ curl 10.108.214.84:3306

目前使用hostNetwork部署,通过宿主机ip+port访问,弊端:

  • 服务使用hostNetwork,使得宿主机的端口大量暴漏,存在安全隐患
  • 容易引发端口冲突

服务均属于k8s集群,尽可能使用k8s的网络访问,因此可以对目前myblog访问mysql的方式做改造:

  • 为mysql创建一个固定clusterIp的Service,把clusterIp配置在myblog的环境变量中
  • 利用集群服务发现的能力,组件之间通过service name来访问
服务发现

在k8s集群中,组件之间可以通过定义的Service名称实现通信。

演示服务发现:

## 演示思路:在myblog的容器中直接通过service名称访问服务,观察是否可以访问通# 先查看服务
$ kd get svc
NAME     TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)    AGE
myblog   ClusterIP   10.99.174.93    <none>        80/TCP     59m
mysql    ClusterIP   10.108.214.84   <none>        3306/TCP   35m# 进入myblog容器
$ kd exec -ti myblog-5c97d79cdb-j485f bash
[root@myblog-5c97d79cdb-j485f myblog]# curl mysql:3306
5.7.29 )(mysql_native_password ot packets out of order
[root@myblog-5c97d79cdb-j485f myblog]# curl myblog/blog/index/
我的博客列表

虽然podip和clusterip都不固定,但是service name是固定的,而且具有完全的跨集群可移植性,因此组件之间调用的同时,完全可以通过service name去通信,这样避免了大量的ip维护成本,使得服务的yaml模板更加简单。因此可以对mysql和myblog的部署进行优化改造:

  1. mysql可以去掉hostNetwork部署,使得服务只暴漏在k8s集群内部网络
  2. configMap中数据库地址可以换成Service名称,这样跨环境的时候,配置内容基本上可以保持不用变化

修改deploy-mysql.yaml

    spec:hostNetwork: true	# 去掉此行volumes: - name: mysql-datahostPath: path: /opt/mysql/data

修改configmap.yaml

apiVersion: v1
kind: ConfigMap
metadata:name: myblognamespace: luffy
data:MYSQL_HOST: "mysql"	# 此处替换为mysqlMYSQL_PORT: "3306"

应用修改:

$ kubectl delete -f deployment-mysql.yaml## myblog不用动,会自动因健康检测不过而重启

服务发现实现:

CoreDNS是一个Go语言实现的链式插件DNS服务端,是CNCF成员,是一个高性能、易扩展的DNS服务端

$ kubectl -n kube-system get po -o wide|grep dns
coredns-d4475785-2w4hk             1/1     Running   0          4d22h   10.244.0.64       
coredns-d4475785-s49hq             1/1     Running   0          4d22h   10.244.0.65# 查看myblog的pod解析配置
$ kubectl -n luffy exec -ti myblog-5c97d79cdb-j485f bash
[root@myblog-5c97d79cdb-j485f myblog]# cat /etc/resolv.conf
nameserver 10.96.0.10
search luffy.svc.cluster.local svc.cluster.local cluster.local
options ndots:5## 10.96.0.10 从哪来
$ kubectl -n kube-system get svc
NAME       TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)         AGE
kube-dns   ClusterIP   10.96.0.10   <none>        53/UDP,53/TCP   51d## 启动pod的时候,会把kube-dns服务的cluster-ip地址注入到pod的resolve解析配置中,同时添加对应的namespace的search域。 因此跨namespace通过service name访问的话,需要添加对应的namespace名称,
service_name.namespace
$ kubectl get svc
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1    <none>        443/TCP   26h
Service负载均衡之NodePort

cluster-ip为虚拟地址,只能在k8s集群内部进行访问,集群外部如果访问内部服务,实现方式之一为使用NodePort方式。NodePort会默认在 30000-32767 ,不指定的会随机使用其中一个。

myblog/deployment/svc-myblog-nodeport.yaml

apiVersion: v1
kind: Service
metadata:name: myblog-npnamespace: luffy
spec:ports:- port: 80protocol: TCPtargetPort: 8002selector:app: myblogtype: NodePort

查看并访问服务:

$ kd create -f svc-myblog-nodeport.yaml
service/myblog-np created
$ kd get svc
NAME        TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)        AGE
myblog      ClusterIP   10.99.174.93     <none>        80/TCP         102m
myblog-np   NodePort    10.105.228.101   <none>        80:30647/TCP   4s
mysql       ClusterIP   10.108.214.84    <none>        3306/TCP       77m#集群内每个节点的NodePort端口都会进行监听
$ curl 172.21.51.67:30647/blog/index/
我的博客列表
$ curl 172.21.51.68:30647/blog/index/
我的博客列表
## 浏览器访问

思考:

  1. NodePort的端口监听如何转发到对应的Pod服务?

  2. CLUSTER-IP为虚拟IP,集群内如何通过虚拟IP访问到具体的Pod服务?

kube-proxy

运行在每个节点上,监听 API Server 中服务对象的变化,再通过创建流量路由规则来实现网络的转发。参照

有三种模式:

  • User space, 让 Kube-Proxy 在用户空间监听一个端口,所有的 Service 都转发到这个端口,然后 Kube-Proxy 在内部应用层对其进行转发 , 所有报文都走一遍用户态,性能不高,k8s v1.2版本后废弃。
  • Iptables, 当前默认模式,完全由 IPtables 来实现, 通过各个node节点上的iptables规则来实现service的负载均衡,但是随着service数量的增大,iptables模式由于线性查找匹配、全量更新等特点,其性能会显著下降。
  • IPVS, 与iptables同样基于Netfilter,但是采用的hash表,因此当service数量达到一定规模时,hash查表的速度优势就会显现出来,从而提高service的服务性能。 k8s 1.8版本开始引入,1.11版本开始稳定,需要开启宿主机的ipvs模块。

IPtables模式示意图:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

$ iptables-save |grep -v myblog-np|grep  "luffy/myblog"
-A KUBE-SERVICES ! -s 10.244.0.0/16 -d 10.99.174.93/32 -p tcp -m comment --comment "demo/myblog: cluster IP" -m tcp --dport 80 -j KUBE-MARK-MASQ
-A KUBE-SERVICES -d 10.99.174.93/32 -p tcp -m comment --comment "demo/myblog: cluster IP" -m tcp --dport 80 -j KUBE-SVC-WQNGJ7YFZKCTKPZK$ iptables-save |grep KUBE-SVC-WQNGJ7YFZKCTKPZK
-A KUBE-SVC-WQNGJ7YFZKCTKPZK -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-GB5GNOM5CZH7ICXZ
-A KUBE-SVC-WQNGJ7YFZKCTKPZK -j KUBE-SEP-7GWC3FN2JI5KLE47$  iptables-save |grep KUBE-SEP-GB5GNOM5CZH7ICXZ
-A KUBE-SEP-GB5GNOM5CZH7ICXZ -p tcp -m tcp -j DNAT --to-destination 10.244.1.158:8002$ iptables-save |grep KUBE-SEP-7GWC3FN2JI5KLE47
-A KUBE-SEP-7GWC3FN2JI5KLE47 -p tcp -m tcp -j DNAT --to-destination 10.244.1.159:8002
Kubernetes服务访问之Ingress

对于Kubernetes的Service,无论是Cluster-Ip和NodePort均是四层的负载,集群内的服务如何实现七层的负载均衡,这就需要借助于Ingress,Ingress控制器的实现方式有很多,比如nginx, Contour, Haproxy, trafik, Istio。几种常用的ingress功能对比和选型可以参考这里

Ingress-nginx是7层的负载均衡器 ,负责统一管理外部对k8s cluster中Service的请求。主要包含:

  • ingress-nginx-controller:根据用户编写的ingress规则(创建的ingress的yaml文件),动态的去更改nginx服务的配置文件,并且reload重载使其生效(是自动化的,通过lua脚本来实现);

  • Ingress资源对象:将Nginx的配置抽象成一个Ingress对象

    apiVersion: networking.k8s.io/v1beta1
    kind: Ingress
    metadata:name: simple-example
    spec:rules:- host: foo.bar.comhttp:paths:- path: /backend:serviceName: service1servicePort: 8080
示意图:

实现逻辑

1)ingress controller通过和kubernetes api交互,动态的去感知集群中ingress规则变化
2)然后读取ingress规则(规则就是写明了哪个域名对应哪个service),按照自定义的规则,生成一段nginx配置
3)再写到nginx-ingress-controller的pod里,这个Ingress controller的pod里运行着一个Nginx服务,控制器把生成的nginx配置写入/etc/nginx/nginx.conf文件中
4)然后reload一下使配置生效。以此达到域名分别配置和动态更新的问题。

安装

官方文档

$ wget https://raw.githubusercontent.com/kubernetes/ingress-nginx/nginx-0.30.0/deploy/static/mandatory.yaml
## 或者使用myblog/deployment/ingress/mandatory.yaml
## 修改部署节点
$ grep -n5 nodeSelector mandatory.yaml
212-    spec:
213-      hostNetwork: true #添加为host模式
214-      # wait up to five minutes for the drain of connections
215-      terminationGracePeriodSeconds: 300
216-      serviceAccountName: nginx-ingress-serviceaccount
217:      nodeSelector:
218-        ingress: "true"		#替换此处,来决定将ingress部署在哪些机器
219-      containers:
220-        - name: nginx-ingress-controller
221-          image: quay.io/kubernetes-ingress-controller/nginx-ingress-controller:0.30.0
222-          args:

创建ingress

# 为k8s-master节点添加label
$ kubectl label node k8s-master ingress=true$ kubectl create -f mandatory.yaml

使用示例:myblog/deployment/ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:name: myblognamespace: luffy
spec:rules:- host: myblog.luffy.comhttp:paths:- path: /backend:serviceName: myblogservicePort: 80

ingress-nginx动态生成upstream配置:

...server_name myblog.luffy.com ;listen 80  ;listen [::]:80  ;listen 443  ssl http2 ;listen [::]:443  ssl http2 ;set $proxy_upstream_name "-";ssl_certificate_by_lua_block {certificate.call()}location / {set $namespace      "luffy";set $ingress_name   "myblog";...
访问

域名解析服务,将 myblog.luffy.com解析到ingress的地址上。ingress是支持多副本的,高可用的情况下,生产的配置是使用lb服务(内网F5设备,公网elb、slb、clb,解析到各ingress的机器,如何域名指向lb地址)

本机,添加如下hosts记录来演示效果。

172.21.51.67 myblog.luffy.com

然后,访问 http://myblog.luffy.com/blog/index/

HTTPS访问:

#自签名证书
$ openssl req -x509 -nodes -days 2920 -newkey rsa:2048 -keyout tls.key -out tls.crt -subj "/CN=*.luffy.com/O=ingress-nginx"# 证书信息保存到secret对象中,ingress-nginx会读取secret对象解析出证书加载到nginx配置中
$ kubectl -n luffy create secret tls https-secret --key tls.key --cert tls.crt

修改yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:name: myblog-tlsnamespace: luffy
spec:rules:- host: myblog.luffy.comhttp:paths:- path: /backend:serviceName: myblogservicePort: 80tls:- hosts:- myblog.luffy.comsecretName: https-secret

然后,访问 https://myblog.luffy.com/blog/index/

多路径转发及重写的实现
  1. 多path转发示例:

    目标:

myblog.luffy.com -> 172.21.51.67 -> /foo   service1:4200/bar   service2:8080/		 myblog:80

​ 实现:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:name: simple-fanout-examplenamespace: luffy
spec:rules:- host: myblog.luffy.comhttp:paths:- path: /foobackend:serviceName: service1servicePort: 4200- path: /barbackend:serviceName: service2servicePort: 8080- path: /backend:serviceName: myblogservicePort: 80
  1. nginx的URL重写

    目标:

    myblog.luffy.com -> 172.21.51.67 -> /foo/    myblog:80/admin/
    

实现:

   apiVersion: networking.k8s.io/v1beta1kind: Ingressmetadata:name: rewrite-pathnamespace: luffyannotations:nginx.ingress.kubernetes.io/rewrite-target: /admin/$1spec:rules:- host: myblog.luffy.comhttp:paths:- path: /foo/(.*)backend:serviceName: myblogservicePort: 80
小结
  1. 核心讲如何通过k8s管理业务应用
  2. 介绍k8s的架构、核心组件和工作流程,使用kubeadm快速安装k8s集群
  3. 定义Pod.yaml,将myblog和mysql打包在同一个Pod中,myblog使用localhost访问mysql
  4. mysql数据持久化,为myblog业务应用添加了健康检查和资源限制
  5. 将myblog与mysql拆分,使用独立的Pod管理
  6. yaml文件中的环境变量存在账号密码明文等敏感信息,使用configMap和Secret来统一配置,优化部署
  7. 只用Pod去直接管理业务应用,对于多副本的需求,很难实现,因此使用Deployment Workload
  8. 有了多副本,多个Pod如何去实现LB入口,因此引入了Service的资源类型,有CLusterIp和NodePort
  9. ClusterIP是四层的IP地址,不固定,不具备跨环境迁移,因此利用coredns实现集群内服务发现,组件之间直接通过Service名称通信,实现配置的去IP化
  10. 对Django应用做改造,django直接使用mysql:3306实现数据库访问
  11. 为了实现在集群外部对集群内服务的访问,因此创建NodePort类型的Service
  12. 介绍了Service的实现原理,通过kube-proxy利用iptables或者ipvs维护服务访问规则,实现虚拟IP转发到具体Pod的需求
  13. 为了实现集群外使用域名访问myblog,因此引入Ingress资源,通过定义访问规则,实现七层代理
  14. 考虑真实的场景,对Ingress的使用做了拓展,介绍多path转发及nginx URL重写的实现
    .com
    http:
    paths:
    • path: /
      backend:
      serviceName: myblog
      servicePort: 80
      tls:
  • hosts:
    • myblog.luffy.com
      secretName: https-secret

然后,访问 https://myblog.luffy.com/blog/index/###### 多路径转发及重写的实现1. 多path转发示例:目标:```none
myblog.luffy.com -> 172.21.51.67 -> /foo   service1:4200/bar   service2:8080/		 myblog:80

​ 实现:

apiVersion: networking.k8s.io/v1beta1
kind: Ingress
metadata:name: simple-fanout-examplenamespace: luffy
spec:rules:- host: myblog.luffy.comhttp:paths:- path: /foobackend:serviceName: service1servicePort: 4200- path: /barbackend:serviceName: service2servicePort: 8080- path: /backend:serviceName: myblogservicePort: 80
  1. nginx的URL重写

    目标:

    myblog.luffy.com -> 172.21.51.67 -> /foo/    myblog:80/admin/
    

实现:

   apiVersion: networking.k8s.io/v1beta1kind: Ingressmetadata:name: rewrite-pathnamespace: luffyannotations:nginx.ingress.kubernetes.io/rewrite-target: /admin/$1spec:rules:- host: myblog.luffy.comhttp:paths:- path: /foo/(.*)backend:serviceName: myblogservicePort: 80
小结
  1. 核心讲如何通过k8s管理业务应用
  2. 介绍k8s的架构、核心组件和工作流程,使用kubeadm快速安装k8s集群
  3. 定义Pod.yaml,将myblog和mysql打包在同一个Pod中,myblog使用localhost访问mysql
  4. mysql数据持久化,为myblog业务应用添加了健康检查和资源限制
  5. 将myblog与mysql拆分,使用独立的Pod管理
  6. yaml文件中的环境变量存在账号密码明文等敏感信息,使用configMap和Secret来统一配置,优化部署
  7. 只用Pod去直接管理业务应用,对于多副本的需求,很难实现,因此使用Deployment Workload
  8. 有了多副本,多个Pod如何去实现LB入口,因此引入了Service的资源类型,有CLusterIp和NodePort
  9. ClusterIP是四层的IP地址,不固定,不具备跨环境迁移,因此利用coredns实现集群内服务发现,组件之间直接通过Service名称通信,实现配置的去IP化
  10. 对Django应用做改造,django直接使用mysql:3306实现数据库访问
  11. 为了实现在集群外部对集群内服务的访问,因此创建NodePort类型的Service
  12. 介绍了Service的实现原理,通过kube-proxy利用iptables或者ipvs维护服务访问规则,实现虚拟IP转发到具体Pod的需求
  13. 为了实现集群外使用域名访问myblog,因此引入Ingress资源,通过定义访问规则,实现七层代理
  14. 考虑真实的场景,对Ingress的使用做了拓展,介绍多path转发及nginx URL重写的实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/508941.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于STC12C5A60S2系列1T 8051单片机的TM1638键盘数码管模块的数码管显示应用

基于STC12C5A60S2系列1T 8051单片机的TM1638键盘数码管模块的数码管显示应用 STC12C5A60S2系列1T 8051单片机管脚图STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式及配置STC12C5A60S2系列1T 8051单片机I/O口各种不同工作模式介绍TM1638键盘数码管模块概述TM1638键盘数码管…

板子合集1.0

版权声明&#xff1a;本文为博主原创文章&#xff0c;遵循 CC 4.0 BY-SA 版权协议&#xff0c;转载请附上原文出处链接和本声明。 原文链接&#xff1a;https://blog.csdn.net/JK01WYX/ 文章目录 1.快速幂板子2.gcd得最大公约数3.堆优化的dijkstra板子4.线段树1板子 区间加线段…

Git实战(2)

git work flow ------------------------------------------------------- ---------------------------------------------------------------- 场景问题及处理 问题1&#xff1a;最近提交了 a,b,c,d记录&#xff0c;想把b记录删掉其他提交记录保留&#xff1a; git reset …

WhatsApp API号注册平台价格对比:帮你选择性价比最高的服务

WhatsApp作为全球使用人数众多的即时通讯工具&#xff0c;推出的API服务为企业提供了强大的客户互动能力。然而面对众多提供WhatsApp API号注册的平台&#xff0c;企业在选择时很容易感到困惑。这篇文章将会对目前市面上比较主流的WhatsApp API号注册平台进行价格对比&#xff…

错误: 找不到或无法加载主类 com.zql.springbootTest.SpringbootTestApplication

首先查看application.properties是否出现问题 然后可以尝试 maven install

前后端分离项目服务器部署

文章目录 前言准备工作安装jdk1.8安装nginx安装库解压、编译nginx并安装nginx 命令测试nginx 安装mysql卸载mariadb用root用户登录系统&#xff0c;增加mysql用户和组准备数据目录初始化MySQL将mysql加入到服务中编辑配置文件&#xff0c;保存退出启动mysql配置环境变量设置开机…

linux安全--DNS欺骗,钓鱼网站搭建

目录 一&#xff0c;实验准备 首先让client能上网 1&#xff09;实现全网互通&#xff0c;实现全网互通过程请看 2&#xff09;SNAT源地址转换 3&#xff09;部署DHCP服务 4)配置DHCP服务 5&#xff09;启动服务 6&#xff09;安装DNS服务 7&#xff09;DNS配置 8)启动DNS…

软考证书=职称证书?

官方的回答 根据《计算机技术与软件专业技术资格&#xff08;水平&#xff09;考试暂行规定》&#xff08;国人部发〔2003〕39号&#xff09;规定&#xff0c;通过考试并获得相应级别计算机专业技术资格&#xff08;水平&#xff09;证书的人员&#xff0c;表明其已具备从事相…

redis06 redis事务

思维草图 redis事务认识 redis事务是一个单独的隔离操作&#xff0c;事务中的所有命令都会序列化、按顺序地执行&#xff0c;事务在执行的过程中&#xff0c;不会被其他客户端发送来的命令请求所打断。 redis事务的主要作用就是串联多个命令防止别的命令插队。 Multi、Exec、…

【小白学机器学习5】MSE, RMSE,MAE, MAPE, WMAPE

目录 1 评价误差的各种度量指标 2 从误差的评价开始捋这个问题 2.1 误差问题的由来&#xff1a;回归模型预测值和真实值的差距 2.2 如何评价某函数的预测值是否足够好&#xff1f; 如何比较不同的预测函数的预测值的好坏呢&#xff1f; 2.3 最小二乘法&#xff1a;应该叫最…

vue实现图片上传至oss,返回url插入数据库,最后在前端页面上回显图片

vue前端上传图像 上传图片 使用上传图片的upload组件 <el-form-item label"设备图像"><el-upload//设置class样式class"avatar-uploader"//绑定上传路径:action"uploadUrl"//携带token值:headers"tokenInfo":show-file-lis…

信息系统安全与对抗-作业2

目录 1、使用自己姓名拼音创建一个账户&#xff0c; 并使用命令和图形化查看 2、使用自己拼音打头字母创建一个隐藏账户 &#xff0c;并使用命令和图形化查看 3、使用命令启动 telnet 服务 4、使用命令打开防火墙 23 端口 5、熟悉LINUX系统&#xff0c;使用命令行创建用户…