蓝桥杯练习题——dp

五部曲(代码随想录)

1.确定 dp 数组以及下标含义
2.确定递推公式
3.确定 dp 数组初始化
4.确定遍历顺序
5.debug

入门题

1.斐波那契数

在这里插入图片描述

思路

1.f[i]:第 i 个数的值
2.f[i] = f[i - 1] + f[i - 2]
3.f[0] = 0, f[1] = 1
4.顺序遍历
5.记得特判 n == 0 的时候,因为初始化了 f[1]

class Solution {
public:int fib(int n) {if(n == 0) return n;vector<int> f(n + 1);f[0] = 0, f[1] = 1;for(int i = 2; i <= n; i++) f[i] = f[i - 1] + f[i - 2];return f[n];}
};

2.爬楼梯

在这里插入图片描述

思路

每次可以从下面一个台阶或者下面两个台阶处上来

1.f[i]:爬到第 i 阶楼梯有多少种方法
2.f[i] = f[i - 1] + f[i - 2]
3.f[0] = 1, f[1] = 1
4.顺序遍历

class Solution {
public:int climbStairs(int n) {vector<int> f(n + 1);f[0] = 1, f[1] = 1;for(int i = 2; i <= n; i++) f[i] = f[i - 1] + f[i - 2];return f[n];}
};

3.使用最小花费爬楼梯

在这里插入图片描述

思路

可以从 0 或 1 处开始爬楼梯,需要爬到第 n 阶楼梯

1.f[i]:爬到第 i 阶楼梯需要的最小花费
2.f[i] = min(f[i - 1] + cost[i - 1], f[i - 2] + cost[i - 2)
3.f[0] = 0, f[1] = 0
4.顺序遍历

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int n = cost.size();vector<int> f(n + 1);f[0] = 0, f[1] = 0;for(int i = 2; i <= n; i++){f[i] = min(f[i - 1] + cost[i - 1], f[i - 2] + cost[i - 2]);}return f[n];}
};

4.不同路径

在这里插入图片描述

思路

1.f[i][j]: 走到 (i, j) 总共的路径
2.f[i][j] = f[i - 1][j] + f[i][j - 1]
3.f[i][1] = 1, f[1][i] = 1
4.顺序遍历

class Solution {
public:int uniquePaths(int m, int n) {vector<vector<int>> f(n + 1, vector<int>(m + 1));for(int i = 0; i <= n; i++) f[i][1] = 1;for(int i = 0; i <= m; i++) f[1][i] = 1;for(int i = 2; i <= n; i++){for(int j = 2; j <= m; j++){f[i][j] = f[i - 1][j] + f[i][j - 1];}}return f[n][m];}
};

5.不同路径 II

在这里插入图片描述

思路

1.f[i][j]: 走到 (i, j) 总共的路径
2.f[i][j] = f[i - 1][j] + f[i][j - 1]
3.f[i][0] = 1, f[0][i] = 1, 其他 = 0
4.顺序遍历

class Solution {
public:int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {int n = obstacleGrid.size();int m = obstacleGrid[0].size();vector<vector<int>> f(n, vector<int>(m, 0));for(int i = 0; i < n && !obstacleGrid[i][0]; i++) f[i][0] = 1;for(int i = 0; i < m && !obstacleGrid[0][i]; i++) f[0][i] = 1;for(int i = 1; i < n; i++){for(int j = 1; j < m; j++){if(!obstacleGrid[i][j]){f[i][j] = f[i - 1][j] + f[i][j - 1];}}}return f[n - 1][m - 1];}
};

6.整数拆分

在这里插入图片描述

思路

1.f[i]: 拆数字 i 可得到的最大乘积
2.拆分成 j * (i - j) 或 j * f[i - j],f[i] = max(f[i], max(j * (i - j), j * [i - j]))
3.f[0] = 0, f[1] = 1
4.顺序遍历

class Solution {
public:int integerBreak(int n) {vector<int> f(n + 1);f[0] = 0, f[1] = 1;for(int i = 2; i <= n; i++){for(int j = 0; j < i; j++){f[i] = max(f[i], max(j * (i - j), j * f[i - j]));}}return f[n];}
};

7.不同的二叉搜索树

在这里插入图片描述

思路

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量
元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量
元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量
元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量
有2个元素的搜索树数量就是dp[2]。
有1个元素的搜索树数量就是dp[1]。
有0个元素的搜索树数量就是dp[0]。
所以dp[3] = dp[2] * dp[0] + dp[1] * dp[1] + dp[0] * dp[2]
dp[i] += dp[以j为头结点左子树节点数量] * dp[以j为头结点右子树节点数量]

1.f[i]: 由 1 到 i 个节点的二叉搜索树个数
2.f[i] += f[j - 1] * f[i - j]
3.f[0] = 1
4.顺序遍历

class Solution {
public:int numTrees(int n) {vector<int> f(n + 1);f[0] = 1;for(int i = 1; i <= n; i++){for(int j = 1; j <= i; j++){f[i] += f[j - 1] * f[i - j];}}return f[n];}
};

背包问题

1.01背包问题

在这里插入图片描述

思路

1.f[i][j]: 前 i 个物品在容量为 j 的情况下的最大价值
2.f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i])
3.全部 = 0
4.顺序遍历

#include<iostream>
using namespace std;
const int N = 1e3 + 10;
int f[N][N], v[N], w[N];
int n, m;int main(){scanf("%d%d", &n, &m);for(int i = 1; i <= n; i++) scanf("%d%d", &v[i], &w[i]);for(int i = 1; i <= n; i++){for(int j = 0; j <= m; j++){// 不选f[i][j] = f[i - 1][j];// 选if(v[i] <= j) f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);}}printf("%d", f[n][m]);return 0;
}// 滚动数组优化
#include<iostream>
using namespace std;
const int N = 1e3 + 10;
int f[N], v[N], w[N];
int n, m;int main(){scanf("%d%d", &n, &m);for(int i = 1; i <= n; i++) scanf("%d%d", &v[i], &w[i]);for(int i = 1; i <= n; i++){for(int j = m; j >= v[i]; j--){f[j] = max(f[j], f[j - v[i]] + w[i]);}}printf("%d", f[m]);return 0;
}

2.分割等和子集

在这里插入图片描述

思路

分割成两个等和子集,即找到是否存在和为 sum / 2 的子集,转化为 01 背包,背包容量为 sum / 2

1.f[j]: 背包容量为 i,放入物品后的最大重量
2.f[j] = max(f[j], f[j - nums[i]] + nums[i])
3.全部 = 0
4.倒序遍历

class Solution {
public:bool canPartition(vector<int>& nums) {int n = nums.size(), sum = 0;for(int i = 0; i < n; i++) sum += nums[i];if(sum % 2) return false;vector<int> f(10001, 0);for(int i = 0; i < n; i++){for(int j = sum / 2; j >= nums[i]; j--){f[j] = max(f[j], f[j - nums[i]] + nums[i]);if(f[j] == sum / 2) return true;}}return false;}
};

3.最后一块石头的重量 II

在这里插入图片描述

思路

尽可能分成两堆重量相同,使得相撞后重量最小

1.f[j]: 容量为 j 的背包,最大价值
2.f[j] = max(f[j], f[j - stones[i]] + stones[i])
3.全部 = 0
4.倒序遍历

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int n = stones.size(), sum = 0;for(int i = 0; i < n; i++) sum += stones[i];vector<int> f(1501, 0);for(int i = 0; i < n; i++){for(int j = sum / 2; j >= stones[i]; j--){f[j] = max(f[j], f[j - stones[i]] + stones[i]);}}return (sum - f[sum / 2]) - f[sum / 2];}
};

4.目标和

在这里插入图片描述

思路

pos - neg = tar 得 pos - (sum - pos) = tar 得 pos = (sum + tar) / 2
转换为背包容量为 pos,有多少种情况装满
无解的情况:pos 为奇数,tar 的绝对值大于 sum
只要搞到 nums[i],凑成 f[j] 就有 f[j - nums[i]] 种方法。
例如:f[j],j 为5,
已经有一个1(nums[i])的话,有 f[4]种方法 凑成 容量为5的背包。
已经有一个2(nums[i])的话,有 f[3]种方法 凑成 容量为5的背包。
已经有一个3(nums[i])的话,有 f[2]中方法 凑成 容量为5的背包
已经有一个4(nums[i])的话,有 f[1]中方法 凑成 容量为5的背包
已经有一个5(nums[i])的话,有 f[0]中方法 凑成 容量为5的背包
那么凑整 f[5] 有多少方法呢,也就是把 所有的 f[j - nums[i]] 累加起来。

1.f[j]:填满 j 背包有多少种情况
2.f[j] += f[j - nums[i]]
3.f[0] = 1,其他 = 0
4.倒序遍历

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int n = nums.size(), sum = 0;for(int i = 0; i < n; i++) sum += nums[i];if((sum + target) % 2 || abs(target) > sum) return 0;int pos = (sum + target) / 2;vector<int> f(pos + 1, 0);f[0] = 1;for(int i = 0; i < n; i++){for(int j = pos; j >= nums[i]; j--){f[j] += f[j - nums[i]];}}return f[pos];}
};

5.一和零

在这里插入图片描述

思路

可以等价为两个 01 背包,一个装 0,一个装 1

1.f[i][j]: 最多有 i 个 0 和 j 个 1 的最长子集大小
2.f[i][j] = max(f[i][j], f[i - zero][j - one] + 1)
3.全部 = 0
4.倒序遍历

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> f(m + 1, vector<int>(n + 1, 0));for(auto str : strs){int zero = 0, one = 0;for(int i = 0; i < str.size(); i++){if(str[i] == '0') zero++;else one++;  }for(int i = m; i >= zero; i--){for(int j = n; j >= one; j--){f[i][j] = max(f[i][j], f[i - zero][j - one] + 1);}}}return f[m][n];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511348.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python3安装chrome,chromedriver亲测有效

客户用python写了个脚本&#xff0c;需要用到chrome和chromedriver扩展&#xff0c;结果说安装不了&#xff0c;各种报错&#xff0c;好吧我来研究一下。众所周知linux自带python2.7&#xff0c;根据报错查了一下资料发现是版本冲突导致的&#xff0c;系统自带2.7&#xff0c;代…

C++ deque详解以及容器适配器

目录 1.容器适配器 2.deque的使用 2.1deque的介绍 2.2deque的缺陷 2.3deque作为stack和queue的可行性 2.4 deque类的使用 2.4.1deque的构造函数 2.4.2deque容量操作 2.4.3deque赋值&#xff0c;插入 1.容器适配器 适配器是一种设计模式&#xff08;设计模式是一套被人…

解决uni-app中使用webview键盘弹起遮挡input输入框问题

这个平平无奇的回答&#xff0c;可能是全网最靠谱的解决方案。 这里我用的是vue3 setup .vue文件的方式 <view> <web-view :fullscreen"false" :webview-styles"{top: statusBarHeight40,height:height,progress: {color: green,height:1px } }"…

新一代湖仓集存储,多模型统一架构,高效挖掘数据价值

星环科技TDH一直致力于给用户带来高性能、高可靠的一站式大数据基础平台&#xff0c;满足对海量数据的存储和复杂业务的处理需求。 同时在易用性方面持续深耕&#xff0c;降低用户开发和运维成本&#xff0c;让数据处理平民化&#xff0c;助力用户以更便捷、高效的方式去挖掘数…

YOLOv9独家改进|使用HWD(小波下采样)模块改进ADown

专栏介绍&#xff1a;YOLOv9改进系列 | 包含深度学习最新创新&#xff0c;主力高效涨点&#xff01;&#xff01;&#xff01; 一、改进点介绍 HWD是一种下采样模型&#xff0c;应用了小波变换的方法。 ADown是YOLOv9中的下采样模块&#xff0c;对不同的数据场景具有一定的可学…

SpringCloud-RabbitMQ消息模型

本文深入介绍了RabbitMQ消息模型&#xff0c;涵盖了基本消息队列、工作消息队列、广播、路由和主题等五种常见消息模型。每种模型都具有独特的特点和适用场景&#xff0c;为开发者提供了灵活而强大的消息传递工具。通过这些模型&#xff0c;RabbitMQ实现了解耦、异步通信以及高…

MyCAT学习——在openEuler22.03中安装MyCAT2(网盘下载版)

准备工作 因为MyCAT 2基于JDK 1.8开发。也需要在虚拟机中安装JDK&#xff08;JDK官网就能下载&#xff0c;我这提供一个捷径&#xff09; jdk-8u401-linux-x64.rpmhttps://pan.baidu.com/s/1ywcDsxYOmfZONpmH9oDjfw?pwdrhel下载对应的tar安装包,以及对应的jar包 安装程序包…

快速开发一个鸿蒙的页面

文章目录 前言常用组件快速开启简单的鸿蒙页面总结 一、前言 鸿蒙要想快速上手&#xff0c;那么就需要对基础的组件使用比较熟悉&#xff0c;这里就罗列开发中常见的基础组件的使用。 只要是写android的&#xff0c;对于这些组件的使用还是能很快上手的&#xff0c;只要多多…

低空经济20人|卓翼智能任雪峰:以技术驱动市场,引领无人机细分领域创新

作为国内系留无人机领域的领头羊企业&#xff0c;卓翼智能致力于提供智能无人系统解决方案。本期“低空经济20人”请到卓翼智能CEO任雪峰分享他对系留无人机研发应用的经验以及未来无人机行业生态发展的观点。 如今&#xff0c;无人机的应用场景逐渐广泛&#xff0c;在社会发展…

Linux 驱动 中断(二)

中断下半部 在 Linux 内核中&#xff0c;中断下半部&#xff08;也称为中断下半场&#xff09;是指在中断服务程序&#xff08;Top Half&#xff09;执行完毕后&#xff0c;在上下文之外延迟执行的一些操作。中断下半部通常用于处理那些不适合在中断上下文中立即执行的任务&am…

win11部署自己的privateGpt(2024-0304)

什么是privateGpt? privategpt开源项目地址 https://github.com/imartinez/privateGPT/tree/main 官方文档 https://docs.privategpt.dev/overview/welcome/welcome PrivateGPT是一个可投入生产的人工智能项目&#xff0c;利用大型语言模型&#xff08;LLMs&#xff09;的…

【MATLAB】 CEEMD信号分解+FFT傅里叶频谱变换组合算法

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 展示出图效果 1 CEEMD信号分解算法 CEEMD 分解又叫互补集合经验模态分解&#xff0c;英文全称为 Complementary Ensemble Empirical Mode Decomposition。 CEEMD是对EEMD的改进&#xff0c;它在EEMD的基础上引入了一个…