基于粒子群优化算法的图象聚类识别matlab仿真

目录

1.程序功能描述

2.测试软件版本以及运行结果展示

3.核心程序

4.本算法原理

5.完整程序


1.程序功能描述

       基于粒子群优化算法的图象聚类识别。通过PSO优化方法,将数字图片的特征进行聚类,从而识别出数字0~9.

2.测试软件版本以及运行结果展示

MATLAB2017B版本运行

3.核心程序

..............................................................
%参数初始化
global Nwidth;
global Nwidth2;centerNum  = 4;      %聚类中心数
level      = 5;      %图片的分割数 
patternNum = level*2*level+1;
d          = 10;     %十个数字,如果是n张图片,那么就d = n;%step1:图片读取
[Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y0,T1,T2,T3,T4,T5,T6,T7,T8,T9,T0] = func_readimages();%step2:特征的提取
func_feature_catch(level,Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8,Y9,Y0,T1,T2,T3,T4,T5,T6,T7,T8,T9,T0);%step3:获取特征库
[m_pattern,vector,vector2]  = pattern(patternNum);
Nwidth     = size(m_pattern,1);
Nwidth2    = size(m_pattern,1);%step4:粒子群聚类模块调用
%以下是你提供的代码的修正
% iterNum     = 20;  %迭代次数
% particleNum = 100; %初始化粒子数
% [m_pattern,Particle] = C_PSO(m_pattern,patternNum,centerNum,iterNum,Nwidth,Nwidth2,particleNum);%以下是我们提供的代码粒子群聚类代码
particleNum = 50; 
iterNum     = 300;  
[fljg,fg,bfit,ws,cen]=C_PSO2(vector',particleNum,iterNum,centerNum);
%聚类结果分析
figure;
disp('最优聚类输出:');
fljg
disp('最优适应度输出:');
fg
plot(bfit,'r-*');title('最优适应度轨迹');
hold on;
plot(1:length(bfit),fg,'b-.');
legend('最优适应度轨迹','最优适应度');%以下是我们提供的代码粒子群聚类代码
particleNum = 50; 
iterNum     = 300;  
[fljg,fg,bfit,ws,cen]=C_PSO2(vector2',particleNum,iterNum,centerNum);
%聚类结果分析
figure;
disp('最优聚类输出:');
fljg
disp('最优适应度输出:');
fg
plot(bfit,'r-*');title('最优适应度轨迹');
hold on;
plot(1:length(bfit),fg,'b-.');
legend('最优适应度轨迹','最优适应度');
06_003m

4.本算法原理

         粒子群优化(Particle Swarm Optimization, PSO)算法是一种模拟鸟群捕食行为的优化搜索算法,它通过群体中个体之间的信息共享和协作来实现问题的求解。在图像聚类识别中,PSO算法可以用于寻找最佳的聚类中心,从而提高聚类的准确性和效率。

       粒子群优化是一种基于群体的优化技术,灵感来自鸟群或鱼群的社会行为。在PSO中,每个解决方案被看作是搜索空间中的一个“粒子”。每个粒子都有自己的位置和速度,这些位置和速度会根据粒子自己的经验和邻居粒子的经验来更新。

       假设我们有M个粒子,每个粒子iD维搜索空间中具有一个位置向量X_i(t)和一个速度向量V_i(t),其中t表示迭代次数。

w是惯性权重,控制全局搜索与局部搜索的平衡。

c_1c_2是加速常数(认知系数和社会系数),通常为正实数。

r_1r_2是在[0, 1]区间内随机生成的数值,用于引入随机性。

       将图像数据预处理后转换为特征向量,然后利用PSO寻找这些特征向量在高维空间的最佳划分边界或聚类中心。对于每一轮迭代,粒子位置代表不同的聚类中心候选方案,通过评估各个方案的聚类效果来更新粒子的速度和位置,最终得到合适的聚类中心集合并完成图像聚类识别任务。

       在图像聚类识别中,我们可以将图像的每个像素看作是一个数据点,并使用聚类算法将这些数据点划分成不同的类别。PSO算法可以用于优化聚类中心的选择,从而提高聚类的效果。

具体步骤如下:

  1. 初始化粒子群,每个粒子的位置表示一组聚类中心;
  2. 计算每个粒子的适应度值,即聚类效果的评价指标(如类内距离和、类间距离比等);
  3. 根据适应度值更新每个粒子的个体最优位置和全局最优位置;
  4. 使用速度更新公式和位置更新公式更新粒子的速度和位置;
  5. 重复步骤2-4直到满足停止条件(如达到最大迭代次数或适应度值达到预设阈值);
  6. 输出全局最优位置作为最终的聚类中心,并使用这些聚类中心对图像进行聚类识别。

5.完整程序

VVV

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/511420.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

StarRocks——中信建投统一查询服务平台构建

目录 一、需求背景 1.1 数据加工链路复杂 1.2 大数据量下性能不足,查询响应慢 1.3 大量实时数据分散在各个业务系统,无法进行联合分析 1.4 缺少与预计算能力加速一些固定查询 二、构建统一查询服务平台 三、落地后的效果与价值 四、项目经验总结…

用docker部署后端项目

一、搭建局域网 1.1、介绍前后端项目搭建 需要4台服务器,在同一个局域网中 1.2、操作 # 搭建net-ry局域网,用于部署若依项目 net-ry:名字 docker network create net-ry --subnet172.68.0.0/16 --gateway172.68.0.1#查看 docker network ls…

Elasticsearch:向量相似度计算 - 可笑的速度

作者:Chris Hegarty 任何向量数据库的核心都是距离函数,它确定两个向量的接近程度。 这些距离函数在索引和搜索期间执行多次。 当合并段或在图表中导航最近邻居时,大部分执行时间都花在比较向量的相似性上。 对这些距离函数进行微观优化是值…

鸿蒙实战开发:【SIM卡管理】

概述 本示例展示了电话服务中SIM卡相关功能,包含SIM卡的服务提供商、ISO国家码、归属PLMN号信息,以及默认语音卡功能。 样例展示 基础信息 介绍 本示例使用sim相关接口,展示了电话服务中SIM卡相关功能,包含SIM卡的服务提供商、…

力扣每日一题 用栈实现队列

Problem: 232. 用栈实现队列 文章目录 思路复杂度💖 朴素版💖 优化版 思路 👨‍🏫 路飞题解 复杂度 时间复杂度: 添加时间复杂度, 示例: O ( n ) O(n) O(n) 空间复杂度: 添加空间复杂度, 示例: O ( …

Qt+FFmpeg+opengl从零制作视频播放器-1.项目介绍

1.简介 学习音视频开发,首先从做一款播放器开始是比较合理的,每一章节,我都会将源码贴在最后,此专栏你将学习到以下内容: 1)音视频的解封装、解码; 2)Qtopengl如何渲染视频&#…

sql单表运用11.3

一、进入数据库操作界面 1、mysql -u root -p 敲回车 ,输入密码 ,进入数据库操作界面 2、show databases 查看所有的数据(如果没有数据库:创建数据库 create database 库名称) 3、use 数据库名 使…

IDEA中Maven无法下载jar包问题解决

在项目中经常会遇到jar包无法下载的问题,可以根据以下几种方法进行排查。 1. 排查网络连接 网络连接失败,会导致远程访问Maven仓库失败,所以应确保网络连接正常。 2. 排查Maven的配置 Maven配置文件(settings.xml)…

交友盲盒系统PHP开源的盲盒源码

源码介绍: 交友盲盒系统是一款基于PHP开发的开源免费盲盒系统,旨在为用户提供一个充满乐趣和惊喜的社交体验。该系统具有丰富的功能和灵活的扩展性,可以轻松地满足各种线上交友、抽奖活动等场景的需求。 安装说明: PHP版本&…

基于springboot+vue线上教育平台管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现线上教育平台管理系统演示 摘要 本文讲述了使用SSM框架及My Sql数据库技术开发的线上教育网站的设计与实现。本系统是一个可以让学生进行在线学习的网站,众所周知,计算机专业的难度是比较高的,如果只通过在课堂上的学习&a…

【性能测试】Jmeter性能压测-阶梯式/波浪式场景总结(详细)

目录:导读 前言一、Python编程入门到精通二、接口自动化项目实战三、Web自动化项目实战四、App自动化项目实战五、一线大厂简历六、测试开发DevOps体系七、常用自动化测试工具八、JMeter性能测试九、总结(尾部小惊喜) 前言 1、阶梯式场景&am…

docker 安装 portainer

小编给友友们总结了一下 Portainer 的好处以下 Portainer是Docker的图形化管理工具,提供状态显示面板、应用模板快速部署、容器镜像网络数据卷的基本操作(包括上传下载镜像,创建容器等操作)、事件日志显示、容器控制台操作、Swar…