【短时交通流量预测】基于单层BP神经网络

课题名称:基于单层BP神经网络的短时交通流量预测

版本时间:2023-04-27

代码获取方式:QQ:491052175 或者 私聊博主获取

模型简介:

城市交通路网中交通路段上某时刻的交通流量与本路段前几个时段的交通流量有关,并且交通流量具有24小时内准周期的特性。首先采集4 天的交通流量数据,每隔15 分钟记录一次该段时间内的交通流量,一共记录384个时间点的数据。用3天共288 个交通流量的数据训练小波神经网络,最后用训练好的小波神经网络预测第4 天的交通流量。仿真拟采用前4个时间节点的交通流量预测。第5个时间节点;即可以理解为第1-4节点预测第5个节点,第2-5节点预测第6个节点,依次类推构建训练数据和测试数据。一天96个时间节点,按照上述逻辑可以组合92组数据;那么3天288个时间节点可以组合276组5维数据(这里需要注意的是,只能当天数据组合模型数据,故3天可以得到92*3=276组数据)。测试数据为第4天的96个节点,可以组合92组5维测试数据。BP神经网络的构建确定BP神经网络结构。本案例采用的BP神经网络的输入层有4个节点,表示预测时间节点前4个时间点的交通流量;隐含层有通过遍历求误差最小的隐含层节点;输出层有1节点,为网络预测的交通流量。

关于数据:

为什么288个交通流量数据,最后训练数据input=276*4;output=276*1 ?因为一天总共96组时间节点的交通流量;因为前4个节点预测第5个节点,故第1、2、3、4作为第一组训练输入,第5天作为第一组输出;第2、3、4、5作为第二组训练输入,第6天作为第二组输出....,最后,第92、93、94、95作为第92组输入,第96个节点作为第92组输出。所以一天96个节点最后只能有92组4维输入和1为输出。所以测试数据input_test和output_test是92*4和92*1。

改进方向:

求解最佳隐含层节点数

待改进方向:

1.利用智能算法去优化BP神经网络的权值和阈值,比如GA算法,PSO算法,SA算法,GASA算法等等

特殊说明:

神经网络每一次的预测结果都不相同,为了得到更好的结果,建议多次运行取最佳值。

Matlab仿真结果:

基于单层BP神经网络短时交通流量预测的仿真结果

基于单层BP神经网络短时交通流量预测的预测输出

基于单层BP神经网络短时交通流量预测的预测误差

基于单层BP神经网络短时交通流量预测的预测误差百分比

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/512939.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

「爬虫职海录」三镇爬虫

HI,朋友们好 「爬虫职海录」第三期更新啦! 本栏目的内容方向会以爬虫相关的“岗位分析”和“职场访谈”为主,方便大家了解一下当下的市场行情。 本栏目持续更新,暂定收集国内主要城市的爬虫岗位相关招聘信息,有求职…

Python给图片加水印

受到“手动给证件加文字太麻烦”的感触,想用Python来实现给图片加水印,这不方便多了。 这里使用PIL模块: from PIL import Image from PIL import ImageFont from PIL import ImageDrawimg_t Image.open(cat.jpg) img_size_t img_t.size…

《剑指offer》76--删除链表中重复的结点[C++]

目录 题目: 思路: 贴代码: 代码输出 题目: 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,最后返回链表头指针。 如: 链表1->…

合泰HT66F2390----定时器中断学习笔记

前言 无需多言 直接开始定时器中断 的学习 通过上次的PWM学习&#xff0c;上次用的是周期型TM定时器模块 这次使用标准型TM定时器模块&#xff08;STM&#xff09; 代码 #include <HT66F2390.h>void Timer0_Init(void){_stm0c0 0b00001000;_stm0c1 0b11000001;_stm…

【论文精读】Mask R-CNN

摘要 基于Faster RCNN&#xff0c;做出如下改变&#xff1a; 添加了用于预测每个感兴趣区域(RoI)上的分割掩码分支&#xff0c;与用于分类和边界框回归的分支并行。mask分支是一个应用于每个RoI的FCN&#xff0c;以像素到像素的方式预测分割掩码&#xff0c;只增加了很小的计…

List类

目录 1. list的介绍及使用 1.1 list的介绍 1.2 list的使用 1.2.1 list的构造 1.2.2 list iterator的使用 1.2.3 list capacity 1.2.4 list element access 1.2.5 list modifiers list中还有一些操作&#xff0c;需要用到时大家可参阅list的文档说明。 1.2.6 list的迭代…

一本书讲透ChatGPT,实现从理论到实践的跨越!大模型技术工程师必读!

一本书讲透ChatGPT&#xff0c;实现从理论到实践的跨越&#xff01;大模型技术工程师必读 个人简介前言内容简介作者简介专家推荐读者对象购买链接直播预告参与方式 个人简介 &#x1f3d8;️&#x1f3d8;️个人主页&#xff1a;以山河作礼。 &#x1f396;️&#x1f396;️:…

第八节 龙晰Anolis 8.8 安装 DDE 桌面环境

一、前言 最小化安装的龙晰 Anolis OS 8.8 是不带图形化界面的&#xff0c;只能使用命令行&#xff0c;有些时候需要用到桌面环境&#xff0c;而DDE (Deepin Desktop Enviroment) 就是很好的桌面环境&#xff0c;它是指龙晰 Anolis 所搭载的中国自主桌面环境&#xff0c;用起来…

【SpringBoot教程 01】SpringBoot简介及工程搭建

前言&#xff1a;什么是SpringBoot&#xff1f; SpringBoot是一个开源的Java基础框架&#xff0c;它被设计来简化Spring应用的初始搭建以及开发过程。这个框架利用了“约定优于配置”的理念&#xff0c;提供了一系列大型项目中常用的默认配置&#xff0c;让开发者可以快速启动和…

向量数据库Chroma教程

引言 随着大模型的崛起,数据的海洋愈发浩渺无垠。受限于token的数量,无数的开发者们如同勇敢的航海家,开始在茫茫数据之海中探寻新的路径。他们选择了将浩如烟海的知识、新闻、文献、语料等,通过嵌入算法(embedding)的神秘力量,转化为向量数据,存储在神秘的Chroma向量…

1999-2022年30省平均受教育年限(含原始数据和具体计算过程+计算结果)

1999-2022年30省平均受教育年限&#xff08;含原始数据和具体计算过程&#xff09; 1、时间&#xff1a;1999-2022年 2、范围&#xff1a;30省&#xff08;剔除西藏&#xff09; 3、计算方式&#xff1a;平均受教育年限&#xff08;未上学人数*0小学人数*6初中人数*9高中人数…

P5076 【深基16.例7】普通二叉树(简化版)题解

题目 您需要写一种数据结构&#xff0c;来维护一些数&#xff08;都是绝对值以内的数&#xff09;的集合&#xff0c;最开始时集合是空的。其中需要提供以下操作&#xff0c;操作次数q不超过&#xff1a; 定义数x的排名为集合中小于x的数的个数1。查询数x的排名。注意x不一定…