【Python】使用numpy进行神经网络激活函数算法描述

【Python】使用numpy进行神经网络激活函数算法描述

系统:macOS 10.14.5 IDE:PyCharm 2018.2.4

一、What

1.1 NumPy

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。 NumPy 的前身 Numeric 最早是由 Jim Hugunin 与其它协作者共同开发,2005 年,Travis Oliphant 在 Numeric 中结合了另一个同性质的程序库 Numarray 的特色,并加入了其它扩展而开发了 NumPy。NumPy 为开放源代码并且由许多协作者共同维护开发。 NumPy 是一个运行速度非常快的数学库,主要用于数组计算,包含:

  1. 一个强大的N维数组对象 ndarray
  2. 广播功能函数
  3. 整合 C/C++/Fortran 代码的工具
  4. 线性代数、傅里叶变换、随机数生成等功能

1.2 激活函数

神经网络中的每个神经元节点接受上一层神经元的输出值作为本神经元的输入值,并将输入值传递给下一层,输入层神经元节点会将输入属性值直接传递给下一层(隐层或输出层)。在多层神经网络中,上层节点的输出和下层节点的输入之间具有一个函数关系,这个函数称为激活函数(又称激励函数)。

二、Why 

最近接触了一些AI的知识点,感觉Python在这方面还是很有优势的,特别是库的应用,很多精彩的算法公式都可以通过Python简洁的表达出来,主要是numpy,提供了大量数学工具,在激活函数中描述相关的表达式非常方便。

三、How

3.1 准备工作

3.1.1 安装numpy和matplotlib

1、打开偏好设置

2、选择工程文件,选择Project Interpreter,点击+号

3、搜索numpy,点击Install Package

4、稍等片刻,IDE底部会有状态条提示,安装成功后出现如下提示

5、用同样的方式安装matplotlib 

6、然后回到代码中检查是否能import 

import numpy as npimport matplotlib.pyplot as plt

没有标红即正常,as表示给这个库命名,把上面的两个库命名为np和plt是目前通用做法,matplotlib.pyplot主要是用来画图,后面我们会用它来绘制函数的曲线。

3.2 基础数组与画图操作

3.2.1 生成数组

首先我们用numpy生成一个数组,使用arange函数直接生成一维数组,传入一个整数说明数组的长度 

import numpy as np
import matplotlib.pyplot as plta1 = np.arange(9)
print(a1)

3.2.2 绘制曲线

我们把这个数组画出来,使用matplotlib.pyplot的plot函数和show函数实现  plot函数用于绘制曲线,当只传入一组数组时,x轴默认为0,1,2……,y轴为传入的值。

import numpy as np
import matplotlib.pyplot as plta1 = np.arange(9)
print(a1)plt.plot(a1)
plt.show()

这样不够直观,我们在plot中增加一个参数 

plt.plot(a1,’k-o’)中的k-o是设置所绘制图形的颜色、线条类型、图形类型,其中k表示黑色,-表示实线,o表示圆点, 这样子9个点都显示出来了。其他线条类型请参考 https://blog.csdn.net/qiurisiyu2016/article/details/80187177

3.3 Sigmoid公式

上面的公式的作用是将任意实数转换为0~1之间的数,方便后续处理,让我们看看它是如何实现的。

3.3.1 fz=-z

我们来一步一步解析,为了使数组更有代表性,我们给arange()函数传入两个参数 ,代表取数的范围从[-5,6),然后在plot()函数中加一个参数,让横坐标使用我们指定的数组:

可以看到,绘制的曲线为一条斜率为-1的直线。

3.3.2 fz=np.exp(-z)

np.exp(z)是以e为底,以输入参数z为指数的指数函数,数学表达式为fz=e^z

可以看到,绘制的曲线为一条递减的曲线,区间为(0,+∞),其中可以看到经典值e^0=1,e^1=2.718……(自然常数),由于小数点后位数较多,自动转换成了科学计数法,e表示10^,第一个数1.4841e+02即1.4841*10^2≈148,可以看到图中的 第一个点就在150附近。

3.3.3 fz=1+np.exp(-z)

这一步非常重要,如果不进行这一步操作,后续在取倒数时,会发现值的区间超出1,比如当np.exp(-z)=0.1时,1/np.exp(-z)=10,这样整个函数的区间还是(0,+∞),对数据范围限制作用就没有了。

3.3.4 fz=1/(1+np.exp(-z))

这个就是神经网络中的激活函数Sigmoid公式的具体实现,我们看一下它的曲线

这个可以说是非常经典的曲线了,可以看到它是区间(0,1)的递增曲线,并且增长趋势是先加速后减速,类似在动画制作中的小车运动曲线。

但是在实际使用过程中,它依然会存在一些问题,比如在深度神经网络中梯度反向传递时导致梯度爆炸和梯度消失、收敛缓慢、幂运算求解耗时等等,具体缺点说明可以参考

https://blog.csdn.net/tyhj_sf/article/details/79932893

中的详细介绍。

3.4 tanh函数

这个函数的取值区间为(-1,1) ,它的输出是0均值(原点左边+原点右边=0) ,一定程度上可以解决收敛缓慢的问题。

tanh(z)=(np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z))

我们还是来慢慢解析它。

3.4.1 fz=np.exp(z)-np.exp(-z)

这个结构看起来复杂,我们拆成两部分

np.exp(z)

即e^z次方,看看指数爆炸一般的增长

然后是np.exp(-z),这个图像我们之前有显示过了,就是曲线图形跟上面对称,递减的函数

那么两个函数相减的图像是什么呢?

可以看到,这个图像跟sigmoid图像的曲线趋势可以说完全相反,它先加速上升,然后中间缓慢,后面又加速上升,有点像我们学习新东西的过程,一开始大量吸收知识点快速上升,到了瓶颈期进展缓慢,过了以后又快速发展。

3.4.2 fz=np.exp(z)+np.exp(-z)

两个函数相加,可以猜到的是,他们会形成一个抛物线(开口朝下)

3.4.3 fz=(np.exp(z)-np.exp(-z))/(np.exp(z)+np.exp(-z))

tanh函数之前介绍过,它是一个区间(-1,1)的函数,由一个递增函数与一个抛物线函数之商所得,它的特点如前所述,取值区间为(-1,1) ,输出是0均值(原点左边+原点右边=0)。

3.5 Relu函数

目前比较流行的一种函数,ReLU虽然简单,但却是近几年的重要成果,有以下几大优点: 1) 解决了gradient vanishing问题 (在正区间) 2)计算速度非常快,只需要判断输入是否大于0 3)收敛速度远快于sigmoid和tanh

公式如下:

Relu=max(0,x)

它是分区间的函数,当z取值大于0时,取z值本身,小于等于0时,取0,函数实现及图像如下:

import numpy as np
import matplotlib.pyplot as pltz = np.arange(-5, 6)print(z)
fz = np.arange(11)
for i in range(11):if z[i] > 0:fz[i] = z[i]else:fz[i] = 0print(fz)plt.plot(z, fz, 'k-o')plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/513022.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2024-03-05

作业要求: 使用write 和 read 实现 文件夹拷贝功能,不考虑递归拷贝使用循环fork的形式。创建一条进程链,链条上总共有100个进程 要求:程序不崩溃 作业1:使用write 和 read 实现 文件夹拷贝功能,不考虑递归拷…

Arthas 日常记录

一 . 前言 Arthas 是一个 Java 诊断程序 , Arthas 官方 已经很详细的描述了命令的使用 , 如果想整体学习可以查看. 而这一篇文档记录了从最开始接触到 Arthas 到逐步深入过程中的一些记录和感悟 , 整理成文档以便处理. 使用场景 如果是一个可以复现的线上问题,而代…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之RowSplit容器组件

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之RowSplit容器组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、RowSplit容器组件 将子组件横向布局,并在每个子组件之间插入一…

【力扣】208.实现Trie

实不相瞒,我怎么感觉洛谷里面的题目好难呢?虽然说万变不离其宗,但是我就觉得刷洛谷的题让我心情烦躁,刷不下去。于是今天我就刷力扣去了,明天继续挣扎吧! 这道题目其实挺简单的,但是刚开始我没看…

如何使用宝塔面板部署MySQL数据库,并结合内网穿透实现固定公网地址远程连接

文章目录 前言1.Mysql服务安装2.创建数据库3.安装cpolar3.1 开放局域网端口3.2 创建HTTP隧道 4.远程连接5.固定TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 宝塔面板的简易操作性,使得运维难度降低,简化了Linux命令行进行繁琐的配置,下面简单几…

力扣543. 二叉树的直径

Problem: 543. 二叉树的直径 文章目录 题目描述思路复杂度Code 题目描述 思路 1.最大直径 左子树的最大深度 右子树的最大深度; 2.定义一个变量maxDiameter记录最大直径,并编写一个递归函数maxDepth,利用树的后序遍历每次递归求取leftMax&a…

我的第②个出海工具站 - 2024年50个出海工具站计划

为了大家更好的使用各种出海工具。我上线了一版 出海工具导航 站点,经常使用的可以收藏下,我文内使用的网站都集成在了这里,非常使用。 随着AIGC的到来,2024年到了海外工具回暖的一年。今年计划上线50款出海工具站计划&#xff0c…

Stable Diffusion ———LDM、SD 1.0, 1.5, 2.0、SDXL、SDXL-Turbo等版本之间关系现原理详解

前言 2021年5月,OpenAI发表了《扩散模型超越GANs》的文章,标志着扩散模型(Diffusion Models,DM)在图像生成领域开始超越传统的GAN模型,进一步推动了DM的应用。 然而,早期的DM直接作用于像素空…

7.1.3 Selenium的用法2

目录 1. 切换 Frame 2. 前进后退 3. 对 Cookies 操作 4. 选项卡管理(了解) 5. 异常处理 6. 反屏蔽 7. 无头模式 1. 切换 Frame 我们知道网页中有一种节点叫作 iframe,也就是子 Frame,相当于页面的子页面,它的结构和外部网页的结构完全…

个人如何解除电信黑名单:步骤与注意事项

最近很多小编的粉丝给我留言:不知道为什么自己咋就成了电信黑名单了呢?该怎么解除呢?相信只要是遇到这个问题的小伙伴都会很焦虑,但是不要急,不要慌,今天小编就给大家讲讲明白,让大家更好的去解…

vue设计原理-带你重走vue诞生路程

我们首先看下面这个小demo demo源码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" conten…

「项目实践」如何实现导购推荐“千人千面”

前言 在电商背景下&#xff0c;为用户提供精准的导购推荐不仅能极大提升购物体验&#xff0c;也成为推动业务增长的关键驱动力。随着人工智能和数据科学的快速发展&#xff0c;实现“千人千面”的个性化推荐已不再是无法触及的梦想。如何在众多商品中准确捕捉用户的偏好&#…