能量不等式证明

波动方程初值问题能量不等式的证明

Gronwall 不等式

若非负函数 G ( τ ) G(\tau) G(τ) [ 0 , T ] [0,T] [0,T] 上连续可微, G ( 0 ) = 0 G(0)=0 G(0)=0,且对 τ ∈ [ 0 , T ] \tau\in[0,T] τ[0,T]满足 d G ( τ ) d τ ≤ C G ( τ ) + F ( τ ) \frac{dG(\tau)}{d\tau}\leq CG(\tau)+F(\tau) dτdG(τ)CG(τ)+F(τ) 其中 C C C 为常数且 C > 0 C>0 C>0 F ( τ ) F(\tau) F(τ) [ 0 , T ] [0,T] [0,T] 上不减的非负可积函数,

那么有:

d G ( τ ) d τ ≤ e C τ F ( τ ) \frac{dG(\tau)}{d\tau}\leq e^{C\tau}F(\tau) dτdG(τ)eCτF(τ) G ( τ ) ≤ C − 1 ( e C τ − 1 ) F ( τ ) G(\tau)\leq C^{-1}(e^{C\tau}-1)F(\tau) G(τ)C1(eCτ1)F(τ)

常用的替换技巧

u t u t t = 1 2 ⋅ 2 u t ⋅ u t t = 1 2 ( u t 2 ) t u_{t}u_{tt}=\frac{1}{2}\cdot 2u_{t}\cdot u_{tt}=\frac{1}{2}(u_{t}^2)_t ututt=212ututt=21(ut2)t u u t = 1 2 ⋅ 2 u ⋅ u t = 1 2 ( u 2 ) t uu_t=\frac{1}{2}\cdot 2u\cdot u_t =\frac{1}{2}(u^2)_t uut=212uut=21(u2)t u u x x = ( u u x ) x − u x 2 = u x 2 + u u x x − u x 2 uu_{xx}=(uu_x)_x-u_x^2=u_x^2+uu_{xx}-u_x^2 uuxx=(uux)xux2=ux2+uuxxux2 ∵ ( u t u x ) x = u t x u x + u t u x x \because(u_{t}u_{x})_x=u_{tx}u_{x}+u_{t}u_{xx} (utux)x=utxux+utuxx ∴ u t u x x = ( u t u x ) x − u t x u x \therefore u_{t}u_{xx}=(u_{t}u_{x})_x-u_{tx}u_{x} utuxx=(utux)xutxux

u u u 二阶导函数连续时, u x t = u t x u_{xt}=u_{tx} uxt=utx ∴ u t x u x = 1 2 ( u x 2 ) t = 1 2 ⋅ 2 u x ⋅ u x t = u x u t x \therefore u_{tx}u_{x} = \frac{1}{2}(u_{x}^2)_t=\frac{1}{2}\cdot 2u_{x}\cdot u_{xt}=u_{x}u_{tx} utxux=21(ux2)t=212uxuxt=uxutx ∴ u t u x x = ( u t u x ) x − 1 2 ( u x 2 ) t \therefore u_{t}u_{xx}=(u_{t}u_{x})_x-\frac{1}{2}(u_{x}^2)_t utuxx=(utux)x21(ux2)t

能量不等式证明过程

规定 x x x 增长的方向为正方向,而 G r e e n Green Green 公式曲线积分时,组成梯形区域 K τ K_{\tau} Kτ 边界 ∂ K τ \partial K_{\tau} Kτ 的四条线段按照右手法则,只有 Ω 0 \Omega_0 Ω0 这条线段的方向是与右手法则一致,所以有:

∂ K τ = Ω 0 ∪ ( − Γ τ 2 ) ∪ ( − Ω τ ) ∪ ( − Γ τ 1 ) \partial K_{\tau} =\Omega_0\cup(-\Gamma_{\tau_{2}})\cup(-\Omega_{\tau})\cup(-\Gamma_{\tau_{1}}) Kτ=Ω0(Γτ2)(Ωτ)(Γτ1)
在这里插入图片描述
此外,在 ∂ K τ \partial K_{\tau} Kτ 计算曲线积分时,关于 x , t x,t x,t 都积分,但是这两条边 Ω 0 , Ω τ \Omega_0,\Omega_{\tau} Ω0,Ωτ 只在 x x x 方向有增长,而在 t t t 方向无增长,那么这两条线段在计算曲线积分时关于 d t dt dt 的积分项为 0 0 0

待证明的两个不等式:
∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∫ K τ f 2 ( x , t ) d x d t ] \int_{\Omega_\tau} \left[u_t^2(x, \tau) + a^2 u_x^2(x, \tau)\right] dx \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \int_{K_\tau} f^2(x,t) dxdt \right] Ωτ[ut2(x,τ)+a2ux2(x,τ)]dxM[Ω0(ψ2+a2φx2)dx+Kτf2(x,t)dxdt] ∫ K τ [ u t 2 ( x , t ) + a 2 u x 2 ( x , t ) ] d x d t ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∫ K τ f 2 ( x , t ) d x d t ] \int_{K_\tau} \left[u_t^2(x,t) + a^2 u_x^2(x,t)\right] dxdt \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \int_{K_\tau} f^2(x,t) dxdt \right] Kτ[ut2(x,t)+a2ux2(x,t)]dxdtM[Ω0(ψ2+a2φx2)dx+Kτf2(x,t)dxdt]

  1. 在波动方程 ∂ 2 u ∂ t 2 − a 2 ∂ 2 u ∂ x 2 = f \frac{\partial^2 u}{\partial t^2}-a^2\frac{\partial^2 u}{\partial x^2}=f t22ua2x22u=f 两端同乘以 ∂ u ∂ t \frac{\partial u}{\partial t} tu 并在区域 K τ K_\tau Kτ 上积分并按照前面的常用替换得:

∬ K τ u t u t t − a 2 u t u x x d x d t = ∬ K τ u f d x d t \iint_{K_\tau}u_{t}u_{tt}-a^2u_{t}u_{xx}dxdt=\iint_{K_\tau}ufdxdt Kτututta2utuxxdxdt=Kτufdxdt$

∬ K τ 1 2 ( u t 2 + a 2 u x 2 ) t − a 2 ( u t u x ) x d x d t = ∬ K τ u f d x d t \iint_{K_\tau}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)_t-a^2(u_tu_{x})_{x}dxdt=\iint_{K_\tau}ufdxdt Kτ21(ut2+a2ux2)ta2(utux)xdxdt=Kτufdxdt

  1. 应用下面这个 G r e e n Green Green 公式将上面等式左边替换
    ∬ Ω ∂ P ∂ t + ∂ Q ∂ x d σ = ∮ ∂ Ω − P d x + Q d t \iint_{\Omega}\frac{\partial P}{\partial t}+\frac{\partial Q}{\partial x}d\sigma=\oint_{\partial\Omega}-Pdx+Qdt ΩtP+xQdσ=ΩPdx+Qdt其中 P = 1 2 ( u t 2 + a 2 u x 2 ) P=\frac{1}{2}(u_{t}^2+a^2u_{x}^2) P=21(ut2+a2ux2) Q = − a 2 ( u t u x ) Q=-a^2(u_tu_{x}) Q=a2(utux),得闭合曲线积分

∮ ∂ K τ [ − 1 2 ( u t 2 + a 2 u x 2 ) d x − a 2 ( u t u x ) d t ] \oint_{\partial{K_{\tau}}}[-\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx-a^2(u_tu_{x})dt] Kτ[21(ut2+a2ux2)dxa2(utux)dt]

= − ∮ ∂ K τ a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x =-\oint_{\partial{K_{\tau}}}a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx =Kτa2(utux)dt+21(ut2+a2ux2)dx

a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x = □ a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx = \square a2(utux)dt+21(ut2+a2ux2)dx=

∵ ∂ K τ = Ω 0 ∪ ( − Γ τ 2 ) ∪ ( − Ω τ ) ∪ ( − Γ τ 1 ) \because \partial K_{\tau} =\Omega_0\cup(-\Gamma_{\tau_{2}})\cup(-\Omega_{\tau})\cup(-\Gamma_{\tau_{1}}) Kτ=Ω0(Γτ2)(Ωτ)(Γτ1)

∴ − ∮ ∂ K τ a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x \therefore -\oint_{\partial{K_{\tau}}}a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx Kτa2(utux)dt+21(ut2+a2ux2)dx

= − [ ∫ Ω 0 □ − ∫ Ω τ □ − ∫ Γ τ 1 □ − ∫ Γ τ 2 □ ] =-[\int_{\Omega_0}\square-\int_{\Omega_{\tau}}\square-\int_{\Gamma_{\tau_{1}}}\square-\int_{\Gamma_{\tau_{2}}}\square] =[Ω0ΩτΓτ1Γτ2]

Ω 0 , Ω τ \Omega_0,\Omega_{\tau} Ω0,Ωτ 只在 x x x 方向有增长,而在 t t t 方向无增长,那么这两条线段在计算曲线积分时关于 d t dt dt 的积分项为 0 0 0,可得

− ∮ ∂ K τ a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x -\oint_{\partial{K_{\tau}}}a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx Kτa2(utux)dt+21(ut2+a2ux2)dx

= ∫ Γ τ 1 ∪ Γ τ 2 a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x − ∫ Ω 0 1 2 ( u t 2 + a 2 u x 2 ) d x + ∫ Ω τ 1 2 ( u t 2 + a 2 u x 2 ) d x =\int_{\Gamma_{\tau_{1}}\cup\Gamma_{\tau_{2}}}a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx-\int_{\Omega_0}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx+\int_{\Omega_\tau}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx =Γτ1Γτ2a2(utux)dt+21(ut2+a2ux2)dxΩ021(ut2+a2ux2)dx+Ωτ21(ut2+a2ux2)dx

记上面等式的三项分别为 J 1 , J 2 , J 3 J_1,J_2,J_3 J1,J2,J3,即:

J 1 = ∫ Γ τ 1 ∪ Γ τ 2 a 2 ( u t u x ) d t + 1 2 ( u t 2 + a 2 u x 2 ) d x J_1=\int_{\Gamma_{\tau_{1}}\cup\Gamma_{\tau_{2}}}a^2(u_tu_{x})dt+\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx J1=Γτ1Γτ2a2(utux)dt+21(ut2+a2ux2)dx

J 2 = − ∫ Ω 0 1 2 ( u t 2 + a 2 u x 2 ) d x J_2=-\int_{\Omega_0}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx J2=Ω021(ut2+a2ux2)dx

J 3 = ∫ Ω τ 1 2 ( u t 2 + a 2 u x 2 ) d x J_3=\int_{\Omega_\tau}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx J3=Ωτ21(ut2+a2ux2)dx

  1. 应用下面 d x dx dx d t dt dt 的关系,将 J 1 J_1 J1 统一为只关于 d t dt dt 的积分
    Γ τ 1 : d x = a d t \Gamma_{\tau_{1}}:dx=adt Γτ1:dx=adt Γ τ 2 : d x = − a d t \Gamma_{\tau_{2}}:dx=-adt Γτ2:dx=adt

J 1 = ∫ Γ τ 1 a 2 ( u t u x ) d t + 1 2 a ( u t 2 + a 2 u x 2 ) d t + ∫ Γ τ 2 a 2 ( u t u x ) d t − 1 2 a ( u t 2 + a 2 u x 2 ) d t J_1=\int_{\Gamma_{\tau_{1}}}a^2(u_tu_{x})dt+\frac{1}{2}a(u_{t}^2+a^2u_{x}^2)dt+\int_{\Gamma_{\tau_{2}}}a^2(u_tu_{x})dt-\frac{1}{2}a(u_{t}^2+a^2u_{x}^2)dt J1=Γτ1a2(utux)dt+21a(ut2+a2ux2)dt+Γτ2a2(utux)dt21a(ut2+a2ux2)dt
= ∫ Γ τ 1 a 2 ( 2 a u t u x + u t 2 + a 2 u x 2 ) d t + ∫ Γ τ 1 a 2 ( 2 a u t u x − u t 2 − a 2 u x 2 ) d t =\int_{\Gamma_{\tau_{1}}}\frac{a}{2}(2au_tu_{x}+u_{t}^2+a^2u_{x}^2)dt+\int_{\Gamma_{\tau_{1}}}\frac{a}{2}(2au_tu_{x}-u_{t}^2-a^2u_{x}^2)dt =Γτ12a(2autux+ut2+a2ux2)dt+Γτ12a(2autuxut2a2ux2)dt

利用完全平方公式得

J 1 = ∫ Γ τ 1 a 2 ( u t + a u x ) 2 d t − ∫ Γ τ 2 a 2 ( u t − a u x ) 2 d t J_1=\int_{\Gamma_{\tau_{1}}}\frac{a}{2}(u_t+au_x)^2dt-\int_{\Gamma_{\tau_{2}}}\frac{a}{2}(u_t-au_x)^2dt J1=Γτ12a(ut+aux)2dtΓτ22a(utaux)2dt

因为在 Γ τ 1 \Gamma_{\tau_{1}} Γτ1 线段上规定的正方向是 t t t 增长的方向,而 Γ τ 2 \Gamma_{\tau_{2}} Γτ2 上相反,所以 t t t 的积分限分别是 0 0 0 τ \tau τ τ \tau τ 0 0 0 ,也即

J 1 = ∫ 0 τ a 2 ( u t + a u x ) 2 d t − ∫ τ 0 a 2 ( u t − a u x ) 2 d t ≥ 0 J_1=\int_{0}^{\tau}\frac{a}{2}(u_t+au_x)^2dt-\int_{\tau}^0\frac{a}{2}(u_t-au_x)^2dt\geq0 J1=0τ2a(ut+aux)2dtτ02a(utaux)2dt0

第一项平方项且积分下限小于上限故其积分非负,而第二项是平方项在积分下限大于上限加上前面的负号,故也是非负,所以 J 1 ≥ 0 J_1\geq0 J10

  1. J 1 , J 2 , J 3 J_1,J_2,J_3 J1,J2,J3 写回来,根据 J 1 ≥ 0 J_1\geq0 J10 构造不等关系
    J 1 + J 2 + J 3 = ∬ K τ u t f d x d t J_1+J_2+J_3=\iint_{K_{\tau}}u_{t}fdxdt J1+J2+J3=Kτutfdxdt
    ∵ J 1 ≥ 0 \because J_1\geq0 J10
    ∴ J 3 ≤ J 1 + J 3 = J 1 + J 2 + J 3 − J 2 = ∬ K τ u t f d x d t − J 2 \therefore J_3\leq J_1+J_3=J_1+J_2+J_3-J_2=\iint_{K_{\tau}}u_{t}fdxdt-J_2 J3J1+J3=J1+J2+J3J2=KτutfdxdtJ2
    也即 ∫ Ω τ 1 2 ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ u t f d x d t + ∫ Ω 0 1 2 ( u t 2 + a 2 u x 2 ) d x \int_{\Omega_\tau}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}u_{t}fdxdt+\int_{\Omega_0}\frac{1}{2}(u_{t}^2+a^2u_{x}^2)dx Ωτ21(ut2+a2ux2)dxKτutfdxdt+Ω021(ut2+a2ux2)dx
    两边同乘 2 2 2 Ω 0 \Omega_0 Ω0 t = 0 t=0 t=0 的线段,而 t = 0 t=0 t=0 时, u t ( x , 0 ) = ψ , u x ( x , 0 ) = φ x u_t(x,0)=\psi,u_x(x,0)=\varphi_{x} ut(x,0)=ψ,ux(x,0)=φx
    ∫ Ω τ ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ 2 u t f d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}2u_{t}fdxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx Ωτ(ut2+a2ux2)dxKτ2utfdxdt+Ω0(ψ2+a2φx2)dx

对上面不等式右边 ∬ K τ 2 u t f d x d t \iint_{K_{\tau}}2u_{t}fdxdt Kτ2utfdxdt 这一项应用 C a u c h y Cauchy Cauchy 不等式 2 a b ≤ a 2 + b 2 2ab\leq a^2+b^2 2aba2+b2
∫ Ω τ ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ u t 2 + f 2 d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}u_{t}^2+f^2dxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx Ωτ(ut2+a2ux2)dxKτut2+f2dxdt+Ω0(ψ2+a2φx2)dx

此时,对比要证明的不等式
∫ Ω τ ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ f 2 d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}f^2dxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx Ωτ(ut2+a2ux2)dxKτf2dxdt+Ω0(ψ2+a2φx2)dx
发现只是右端多了一项 ∬ K τ u t 2 d x d t \iint_{K_{\tau}}u_{t}^2dxdt Kτut2dxdt

  1. 利用 G r o n w a l l Gronwall Gronwall 不等式将该项消去

G ( τ ) = ∬ K τ ( u t 2 + a 2 u x 2 ) d x d t = ∫ 0 τ ∫ x 0 − a ( t 0 − t ) x 0 + a ( t 0 − t ) ( u t 2 + a 2 u x 2 ) d x d t G(\tau)=\iint_{K_{\tau}}(u_{t}^2+a^2u_{x}^2)dxdt=\int_{0}^{\tau}\int_{x_0-a(t_0-t)}^{x_0+a(t_0-t)}(u_{t}^2+a^2u_{x}^2)dxdt G(τ)=Kτ(ut2+a2ux2)dxdt=0τx0a(t0t)x0+a(t0t)(ut2+a2ux2)dxdt

d G ( τ ) d τ = ∫ Ω τ ( u t 2 + a 2 u x 2 ) d x \frac{dG(\tau)}{d\tau}=\int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx dτdG(τ)=Ωτ(ut2+a2ux2)dx 是待证明不等式的左端

F ( τ ) = ∬ K τ f 2 d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x F(\tau)=\iint_{K_{\tau}}f^2dxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx F(τ)=Kτf2dxdt+Ω0(ψ2+a2φx2)dx

∫ Ω τ ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ u t 2 + f 2 d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}u_{t}^2+f^2dxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx Ωτ(ut2+a2ux2)dxKτut2+f2dxdt+Ω0(ψ2+a2φx2)dx 右边添加 ∬ K τ a 2 u x 2 d x d t \iint_{K_{\tau}}a^2u_{x}^2dxdt Kτa2ux2dxdt,则
∫ Ω τ ( u t 2 + a 2 u x 2 ) d x ≤ ∬ K τ u t 2 + a 2 u x 2 + f 2 d x d t + ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x \int_{\Omega_\tau}(u_{t}^2+a^2u_{x}^2)dx\leq \iint_{K_{\tau}}u_{t}^2+a^2u_{x}^2+f^2dxdt+\int_{\Omega_0}(\psi^2+a^2\varphi_{x}^2)dx Ωτ(ut2+a2ux2)dxKτut2+a2ux2+f2dxdt+Ω0(ψ2+a2φx2)dx

那么此时该不等式满足 G r o n w a l l Gronwall Gronwall 不等式的前提条件
d G ( τ ) d τ ≤ C G ( τ ) + F ( τ ) \frac{dG(\tau)}{d\tau}\leq CG(\tau)+F(\tau) dτdG(τ)CG(τ)+F(τ)
此时 C = 1 C=1 C=1,那么由 G r o n w a l l Gronwall Gronwall 不等式的两个结论,可分别得到如下两个能量不等式,其中 M = e τ M=e^\tau M=eτ
∫ Ω τ [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∫ K τ f 2 ( x , t ) d x d t ] \int_{\Omega_\tau} \left[u_t^2(x, \tau) + a^2 u_x^2(x, \tau)\right] dx \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \int_{K_\tau} f^2(x,t) dxdt \right] Ωτ[ut2(x,τ)+a2ux2(x,τ)]dxM[Ω0(ψ2+a2φx2)dx+Kτf2(x,t)dxdt]
∫ K τ [ u t 2 ( x , t ) + a 2 u x 2 ( x , t ) ] d x d t ≤ M [ ∫ Ω 0 ( ψ 2 + a 2 φ x 2 ) d x + ∫ K τ f 2 ( x , t ) d x d t ] \int_{K_\tau} \left[u_t^2(x,t) + a^2 u_x^2(x,t)\right] dxdt \leq M \left[ \int_{\Omega_0} (\psi^2 + a^2 \varphi_x^2) dx + \int_{K_\tau} f^2(x,t) dxdt \right] Kτ[ut2(x,t)+a2ux2(x,t)]dxdtM[Ω0(ψ2+a2φx2)dx+Kτf2(x,t)dxdt]

波动方程混合问题能量不等式的证明

待证明的两个不等式:
∫ 0 l [ u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) ] d x ≤ M [ ∫ 0 l ( ψ 2 + a 2 φ x 2 ) d x + ∫ Q τ f 2 d x d t ] \int_{0}^{l} \left[u_t^2(x, \tau) + a^2 u_x^2(x, \tau)\right] dx \leq M \left[ \int_{0}^{l} (\psi^2 + a^2 \varphi_x^2) dx + \int_{Q_\tau} f^2 dxdt \right] 0l[ut2(x,τ)+a2ux2(x,τ)]dxM[0l(ψ2+a2φx2)dx+Qτf2dxdt] ∬ Q τ ( u t 2 + a 2 u x 2 ) d x d t ≤ M [ ∫ 0 l ( ψ 2 + a 2 φ x 2 ) d x + ∫ Q τ f 2 d x d t ] \iint_{Q_\tau} \left(u_t^2 + a^2 u_x^2\right) dxdt \leq M \left[ \int_{0}^{l} (\psi^2 + a^2 \varphi_x^2) dx + \int_{Q_\tau} f^2 dxdt \right] Qτ(ut2+a2ux2)dxdtM[0l(ψ2+a2φx2)dx+Qτf2dxdt]

在这里插入图片描述
二维区域的情况下,这里可以不用 G r e e n Green Green 公式将面积分转为线积分,可以直接按照二重积分展开。

  1. 在波动方程 u t t − a 2 u x x = f u_{tt}-a^2u_{xx}=f utta2uxx=f 两端同乘 u t u_t ut 并在区域 Q τ = ( 0 , l ) × ( 0 , τ ) Q_\tau=(0,l)\times(0,\tau) Qτ=(0,l)×(0,τ) 上积分

∬ Q τ u t u t t − a 2 u t u x x d x d t = ∬ Q τ u t f d x d t \iint_{Q_\tau}u_{t}u_{tt}-a^2u_{t}u_{xx}dxdt=\iint_{Q_\tau}u_tf dxdt Qτututta2utuxxdxdt=Qτutfdxdt

利用常用的替换技巧
u t u t t = 1 2 ⋅ 2 u t ⋅ u t t = 1 2 ( u t 2 ) t u_{t}u_{tt}=\frac{1}{2}\cdot 2u_{t}\cdot u_{tt}=\frac{1}{2}(u_{t}^2)_t ututt=212ututt=21(ut2)t u t u x x = ( u t u x ) x − 1 2 ( u x 2 ) t u_{t}u_{xx}=(u_{t}u_{x})_x-\frac{1}{2}(u_{x}^2)_t utuxx=(utux)x21(ux2)t ∬ Q τ 1 2 ( u t 2 ) t + 1 2 a 2 ( u x 2 ) t − ( a 2 u t u x ) x d x d t \iint_{Q_\tau}\frac{1}{2}(u_{t}^2)_t+\frac{1}{2}a^2(u_{x}^2)_t-(a^2u_tu_x)_xdxdt Qτ21(ut2)t+21a2(ux2)t(a2utux)xdxdt,这里用二重积分展开

∬ Q τ 1 2 ( u t 2 ) t + 1 2 a 2 ( u x 2 ) t − ( a 2 u t u x ) x d x d t \iint_{Q_\tau}\frac{1}{2}(u_{t}^2)_t+\frac{1}{2}a^2(u_{x}^2)_t-(a^2u_tu_x)_xdxdt Qτ21(ut2)t+21a2(ux2)t(a2utux)xdxdt

= ∫ 0 τ ∫ 0 l [ ( 1 2 u t 2 + 1 2 a 2 u x 2 ) t − ( a 2 u t u x ) x ] d x d t =\int_{0}^{\tau}\int_{0}^{l}[(\frac{1}{2}u_{t}^2+\frac{1}{2}a^2u_{x}^2)_t-(a^2u_tu_x)_x]dxdt =0τ0l[(21ut2+21a2ux2)t(a2utux)x]dxdt

= ∫ 0 l 1 2 u t 2 ( x , τ ) + 1 2 a 2 u x 2 ( x , τ ) d x − ∫ 0 l 1 2 u t 2 ( x , 0 ) + 1 2 a 2 u x 2 ( x , 0 ) d x − ∫ 0 τ a 2 u t ( l , t ) u x ( l , t ) d t + ∫ 0 τ a 2 u t ( 0 , t ) u x ( 0 , t ) d t =\int_{0}^{l}\frac{1}{2}u_{t}^{2}(x,\tau)+\frac{1}{2}a^2u_{x}^{2}(x,\tau)dx-\int_{0}^{l}\frac{1}{2}u_{t}^{2}(x,0)+\frac{1}{2}a^2u_{x}^{2}(x,0)dx-\int_{0}^{\tau}a^2u_{t}(l,t)u_{x}(l,t)dt+\int_{0}^{\tau}a^2u_{t}(0,t)u_{x}(0,t)dt =0l21ut2(x,τ)+21a2ux2(x,τ)dx0l21ut2(x,0)+21a2ux2(x,0)dx0τa2ut(l,t)ux(l,t)dt+0τa2ut(0,t)ux(0,t)dt

  1. 根据初始条件和齐次边界条件替换上面表达式

初始条件:
u t ( x , 0 ) = ψ ( x ) u_t(x,0)=\psi(x) ut(x,0)=ψ(x) u x ( x , 0 ) = φ x ( x ) u_x(x,0)=\varphi_x(x) ux(x,0)=φx(x)
边界条件:
u ( 0 , t ) = 0 u(0,t)=0 u(0,t)=0 u ( l , t ) = 0 u(l,t)=0 u(l,t)=0即杆的两端是固定的,也即速度为 0 0 0
u t ( l , t ) = u t ( 0 , t ) = 0 u_t(l,t)=u_t(0,t)=0 ut(l,t)=ut(0,t)=0 带入 1. 1. 1. 得到的等式并两边同乘 2 2 2

= ∫ 0 l u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) d x = ∫ 0 l ψ 2 + a 2 φ x 2 d x + 2 ∫ 0 τ ∫ 0 l u t f d x d t =\int_{0}^{l}u_{t}^{2}(x,\tau)+a^2u_{x}^{2}(x,\tau)dx=\int_{0}^{l}\psi^2+a^2\varphi_{x}^{2}dx+2\int_{0}^{\tau}\int_{0}^{l}u_tfdxdt =0lut2(x,τ)+a2ux2(x,τ)dx=0lψ2+a2φx2dx+20τ0lutfdxdt
对等式右边应用 C a u c h y Cauchy Cauchy 不等式以及添加非负项 ∫ 0 τ ∫ 0 l a 2 u x 2 d x d t \int_{0}^{\tau}\int_{0}^{l}a^2u_{x}^2dxdt 0τ0la2ux2dxdt

∫ 0 l u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) d x ≤ ∫ 0 l ψ 2 + a 2 φ x 2 d x + ∫ 0 τ ∫ 0 l f 2 d x d t + ∫ 0 τ ∫ 0 l u t 2 + a 2 u x 2 d x d t \int_{0}^{l}u_{t}^{2}(x,\tau)+a^2u_{x}^{2}(x,\tau)dx\leq \int_{0}^{l}\psi^2+a^2\varphi_{x}^{2}dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt+\int_{0}^{\tau}\int_{0}^{l}u_{t}^2+a^2u_{x}^2dxdt 0lut2(x,τ)+a2ux2(x,τ)dx0lψ2+a2φx2dx+0τ0lf2dxdt+0τ0lut2+a2ux2dxdt

  1. 应用 G r o n w a l l Gronwall Gronwall 不等式

G ( τ ) = ∫ 0 τ ∫ 0 l u t 2 + a 2 u x 2 d x d t G(\tau) = \int_{0}^{\tau}\int_{0}^{l}u_{t}^2+a^2u_{x}^2dxdt G(τ)=0τ0lut2+a2ux2dxdt

F ( τ ) = ∫ 0 l ψ 2 + a 2 φ x 2 d x + ∫ 0 τ ∫ 0 l f 2 d x d t F(\tau)=\int_{0}^{l}\psi^2+a^2\varphi_{x}^{2}dx+\int_{0}^{\tau}\int_{0}^{l}f^2dxdt F(τ)=0lψ2+a2φx2dx+0τ0lf2dxdt

那么 d G ( τ ) d τ = ∫ 0 l u t 2 ( x , τ ) + a 2 u x 2 ( x , τ ) d x \frac{dG(\tau)}{d\tau}=\int_{0}^{l}u_{t}^{2}(x,\tau)+a^2u_{x}^{2}(x,\tau)dx dτdG(τ)=0lut2(x,τ)+a2ux2(x,τ)dx

G ( τ ) , F ( τ ) , d G ( τ ) d τ G(\tau),F(\tau),\frac{dG(\tau)}{d\tau} G(τ),F(τ),dτdG(τ) 带入 G r o n w a l l Gronwall Gronwall 不等式的两个结论即得到待证不等式,其中 C = 1 C=1 C=1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/520983.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

27.基于springboot + vue实现的前后端分离-网上租赁交易系统(项目 + 论文)

项目介绍 本课题是根据用户的需要以及网络的优势建立的一个基于Spring Boot的网上租贸系统,来满足用户网络商品租赁的需求。本网上租贸系统应用Java技术,MYSQL数据库存储数据,基于Spring Boot框架开发。在网站的整个开发过程中,首…

XXE-XML实体注入漏洞

目录 1.xml基础 1.1什么是xml 1.2xml文档结构 1.3 什么是DTD 1.4 什么是实体 1.5 什么是外部实体 2.xxe漏洞 2.1xxe漏洞基本介绍 2.2xxe漏洞的危害 经典漏洞案例分析 3.xxe漏洞挖掘和利用 3.1. 识别潜在的XML入口 3.2. 检查XML处理逻辑 3.3. 构造试探Payload 常…

为什么企业CRM系统用不起来?提高使用率的有效策略揭秘

大家好,我是小编卡林,今天为大家带来的是文章是为什么企业CRM系统用不起来?CRM系统使用率低的原因有很多,其中一个共识是假如一款CRM管理系统让员工普遍认为只是领导查询自己工作的系统,那么,这个项目离失败…

LeetCode Python - 40.组合总和②

目录 题目答案运行结果 题目 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意:解集不能包含重复的组合。 示例 1: 输入…

直流负载原理与应用

直流负载是指能够消耗直流电能的设备或系统,在电力系统中,直流负载主要包括直流电动机、蓄电池、电解槽等。这些设备在运行过程中需要消耗大量的直流电能,因此对直流电源的稳定性和可靠性要求较高。本文将对直流负载的原理及其应用进行简要介…

如何实现class文件的反编译:java-decompiler 反编译工具

java-decompiler 反编译工具 😀 Java Decompiler 是Java反编译工具,可以对 Java 5 和更高版本的 class 文件进行反编译分析。 📝 主旨内容 Java Decompiler是一项开源工具,Java Decompiler工具不仅可以实现反编译.class文件&…

【Azure 架构师学习笔记】- Azure Private Endpoint

本文属于【Azure 架构师学习笔记】系列。 前言 公有云的其中一个特点是默认允许公网访问, 这就对企业环境带来风险,也是很多年前企业对公有云抵触的其中一个原因,现在这类问题已经很少,因为有了很多技术来确保云上的资源被安全地…

基于docker安装的Jenkins实现python执行自动化测试程序

背景 通过Jenkins实现自动化测试,在全局配置中配置好后,执行构建发生如下错误 解决办法: 在Jenkins中插件管理中下载python后,回到Jenkins容器中 查找刚下载的python所在位置 到Jenkins中全局配置中修改脚本 1.可以在环境变量中定义python所在位置 2.在一下图示中进行获取…

IM聊天交友APP源码IM带音视频Uniapp即时通讯安卓苹果APP修改二开

前端开发语言:VUE( 安卓,IOS,WEB为一套前端代码) 服务器端开发语言: PHPWebSocket 数据库:MySql mongodb 前端打包工具:Hbuilder 服务器搭建工具:宝塔 Xshell 短信接口: 支持…

机器学习笔记 DeepFakes和换脸技术简述

一、简述 人脸检测一直是 2000 年代初的主要研究课题。差不多二十年后,这个问题基本上得到了解决,并且人脸检测在大多数编程语言中都可以作为库使用。甚至换脸技术也不是什么新鲜事,并且已经存在了好些年了。 早在2016年左右就有基于OpenCV进行面部交换的方式了,主要是基于…

【Python数据分析系列】一文带你认识pd.DataFrame的组成(案例)

这是我的第233篇原创文章。 一、引言 DataFrame是Pandas库中的一个重要数据结构,它类似于电子表格或数据库表。DataFrame是一个二维的、大小可变的表格数据结构,其中数据以行和列的形式排列。每一列可以是不同的数据类型(整数、浮点数、字符…

2024选哪个牌子的大路灯好用又实惠?口碑最好的五款大路灯品牌型号推荐!

近年来,随着科技时代的迅速发展,大路灯作为一种能够帮助改善光线环境的家电备受追捧,大家都会给自己和家里孩子备上一款大路灯,在读写、工作的时候开大路灯能够充分明亮的照明。然而,市场上存在许多不专业的产品&#…