19 卷积层【李沐动手学深度学习v2课程笔记】

目录

1. 从全连接到卷积

2. 卷积层

3. 图像卷积代码

3.1 互相关运算

3.2 实现二维卷积层

3.3 图像中目标的边缘检测

3.4 学习卷积核

4. 小结


1. 从全连接到卷积

在欧几里得几何中,平移是一种几何变换,表示把一幅图像或一个空间中的每一个点在相同方向移动相同距离。比如对图像分类任务来说,图像中的目标不管被移动到图片的哪个位置,得到的结果(标签)应该是相同的,这就是卷积神经网络中的平移不变性。

平移不变性意味着系统产生完全相同的响应(输出),不管它的输入是如何平移的 。平移同变性(translation equivariance)意味着系统在不同位置的工作原理相同,但它的响应随着目标位置的变化而变化 。

卷积神经网络正是将空间不变性(spatial invariance)的这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。 最终,可以聚合这些局部特征,以在整个图像级别进行预测。

总结:卷积是一个特殊的全连接层

2. 卷积层

3. 图像卷积代码

3.1 互相关运算

import torch
from torch import nn
from d2l import torch as d2ldef corr2d(X, K):  #@save"""计算二维互相关运算"""h, w = K.shapeY = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i, j] = (X[i:i + h, j:j + w] * K).sum()return Y

验证上述二维互相关运算的输出

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

3.2 实现二维卷积层

卷积层对输入和卷积核权重进行互相关运算,并在添加标量偏置之后产生输出。 所以,卷积层中的两个被训练的参数是卷积核权重和标量偏置。 就像我们之前随机初始化全连接层一样,在训练基于卷积层的模型时,我们也随机初始化卷积核权重。

基于上面定义的corr2d函数实现二维卷积层。在__init__构造函数中,将weightbias声明为两个模型参数。前向传播函数调用corr2d函数并添加偏置。

class Conv2D(nn.Module):def __init__(self, kernel_size):super().__init__()self.weight = nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(self, x):return corr2d(x, self.weight) + self.bias

3.3 图像中目标的边缘检测

如下是卷积层的一个简单应用:通过找到像素变化的位置,来检测图像中不同颜色的边缘。 首先,我们构造一个6×8像素的黑白图像。中间四列为黑色(0),其余像素为白色(1)。

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

接下来,我们构造一个高度为1、宽度为2的卷积核K。当进行互相关运算时,如果水平相邻的两元素相同,则输出为零,否则输出为非零。

K = torch.tensor([[1.0, -1.0]])

现在,我们对参数X(输入)和K(卷积核)执行互相关运算。 如下所示,输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘,其他情况的输出为0。

Y = corr2d(X, K)
Y

现在我们将输入的二维图像转置,再进行如上的互相关运算。 其输出如下,之前检测到的垂直边缘消失了。 不出所料,这个卷积核K只可以检测垂直边缘,无法检测水平边缘。

corr2d(X.t(), K)

3.4 学习卷积核

如果我们只需寻找黑白边缘,那么以上[1, -1]的边缘检测器足以。然而,当有了更复杂数值的卷积核,或者连续的卷积层时不可能手动设计滤波器。那么是否可以学习由X生成Y的卷积核呢?

现在让我们看看是否可以通过仅查看“输入-输出”对来学习由X生成Y的卷积核。

我们先构造一个卷积层,并将其卷积核初始化为随机张量。

接下来,在每次迭代中,我们比较Y与卷积层输出的平方误差,然后计算梯度来更新卷积核。

为了简单起见,我们在此使用内置的二维卷积层,并忽略偏置。

# 构造一个二维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1,1, kernel_size=(1, 2), bias=False)# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2  # 学习率for i in range(10):Y_hat = conv2d(X)l = (Y_hat - Y) ** 2conv2d.zero_grad()l.sum().backward()# 迭代卷积核conv2d.weight.data[:] -= lr * conv2d.weight.gradif (i + 1) % 2 == 0:print(f'epoch {i+1}, loss {l.sum():.3f}')

在10次迭代之后,误差已经降到足够低。现在我们来看看我们所学的卷积核的权重张量。

conv2d.weight.data.reshape((1, 2))

4. 小结

  • 二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。

  • 我们可以设计一个卷积核来检测图像的边缘。

  • 我们可以从数据中学习卷积核的参数。

  • 学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。

  • 当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/522380.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《汇编语言》- 读书笔记 - 第16章-直接定址表

《汇编语言》- 读书笔记 - 第16章-直接定址表 16.1 描述了单元长度的标号(数据标号)检测点 16.1 16.2 在其他段中使用数据标号assume通过标号取地址检测点 16.2 16.3 直接定址表(Direct Addressing Table)例1分析代码效果 例2分析…

AIOPS:Zabbix结合讯飞星火做自动化告警+邮件通知并基于人工智能提供解决方案

目前Zabbix官方已经提供Zabbix+ChatGPT的解决方案 ChatGPT一周年,你充分利用了吗?Zabbix+ChatGPT,轻松化解告警! 但是由于需要魔法等其他因素,比较不稳定,遂决定使用国内模型,这里我挑选的是讯飞星火,基于我之前的文档,在此基础上通过Zabbix的告警脚本实现调用AI模型…

[C++]类和对象,explicit,static,友元,构造函数——喵喵要吃C嘎嘎4

希望你开心,希望你健康,希望你幸福,希望你点赞! 最后的最后,关注喵,关注喵,关注喵,大大会看到更多有趣的博客哦!!! 喵喵喵,你对我真的…

关于数竞~

关于数竞 我的本科

【Redisson分布式锁】Redisson读写锁加锁机制分析

欢迎关注公众号(通过文章导读关注:【11来了】),及时收到 AI 前沿项目工具及新技术的推送! 在我后台回复 「资料」 可领取编程高频电子书! 在我后台回复「面试」可领取硬核面试笔记! 文章导读地址…

掘根教你拿捏C++异常(try,catch,throw,栈解退,异常规范,异常的重新抛出)

在介绍异常之前,我觉得很有必要带大家了解一下运行时错误和c异常出现之前的处理运行时错误的方式。这样子能更深入的了解异常的作用和工作原理 运行阶段错误 我们知道,程序有时候会遇到运行阶段错误,导致程序无法正常运行下去 C在运行时可…

云计算 3月8号 (wordpress的搭建)

项目wordpress 实验目的: 熟悉yum和编译安装操作 锻炼关联性思维,便于以后做项目 nginx 编译安装 1、安装源码包 [rootlinux-server ~]# yum -y install gcc make zlib-devel pcre pcre-devel openssl-devel [rootlinux-server ~]# wget http://nginx.…

玩转Random的正确姿势

一、关于java.util.Random 我们知道,在数学领域里面0到1之间的小数是无穷无尽的,所以如果从数学角度上来讲,要计算0到1之间某个小数出现的概率是不现实的,但是作为计算机领域的人员应该会注意到,大多数编程语言中随机…

类与对象(三)--static成员、友元

文章目录 1.static成员1.1概念🎧面试题✒️1.2static的特性🎧1.3思考🎧 2.友元2.1什么是友元?🎧2.2两种友元关系:🎧 1.static成员 1.1概念🎧 🔎 static关键字用于声明类…

CSP-J 2021 T1 分糖果

文章目录 题目传送门算法解析总代码提交记录尾声 题目传送门 洛谷 P7909 [CSP-J 2021] 分糖果 算法解析 首先简化一下题目:取一个值 k k k,使 L ≤ k ≤ R L \leq k \leq R L≤k≤R,输出最大的 k % n k \% n k%n 一个数 % n \% n %n…

Selenium常见元素操作,学完就能上手

web端自动化测试在回归测试、兼容测试扮演着举足轻重的角色,作为web自动化测试工程师,日常工作主要的部分就是编写自动化测试用例代码,借助的开源框架来说,目前市场占有率较高的仍然是selenium。 如何使用selenium完成web页面元素…

测试用例的一些设计好方法,学会就是赚到!

一、概述 测试用例设计方法是指根据测试目的和测试对象,选择合适的技术和策略,来生成测试用例的方法。 测试用例是指导测试过程的重要文档,主要包括用例编号、测试目的、测试步骤、预期结果等。测试用例的编写需要遵循一些原则,…