FPGA的配置状态字寄存器Status Register

目录

简介

状态字定义      

Unknown Device/Many Unknow Devices

解决办法

一般原因


简介

 Xilinx的FPGA有多种配置接口,如SPI,BPI,SeletMAP,Serial,JTAG等;如果从时钟发送者的角度分,还可以分为主动Master(即由FPGA自己发送配置时钟信号CCLK)和被动Slave(即由外部器件提供配置所需要的时钟信号);另外还可由板上稳定晶振提供时钟信号,经由FPGA的EMCCLK接口,再从CCLK端口送出。

        如此多的配置形式,一旦发生配置失败怎么办?大家都知道先要查看一下板子上FPGA的DONE管脚。但绝大多数情况下,DONE管脚此时会是低电平,只能证明配置确实失败了。但是失败的原因到底是什么呢?调试到底应该如何入手呢?

        FPGA的状态字寄存器Status Register能直接告诉你或者极大地辅助判断失败的原因,Xilinx FPGA的状态字,在赛灵思所有器件系列中都基本保持一致的定义(个别位由于系列特性不同可能有细微区别,这些不是最重要的,不在我们今天讨论的范围内)。

状态字定义      

 以7系列 FPGA为例,我们看看UG470上对状态字的完整定义:

         首先,用下载线连接好板子和电脑,板子上好电。打开Vivado硬件管理器,扫描板子上的JTAG链 (Open target -AutoConnect), 板子上的JTAG链中的器件会显示在Hardware窗口中:


        鼠标选中扫描出的FPGA器件,在下方的Hardware Device Properties窗口中,选择Properties项,会出现该FPGA的一系列属性。找到其中的REGISTER分类,展开,第二个寄存器CONFIG_STATUS, 即是我们要讨论的状态字了。

       这里可以看到的是一个配置前的状态字的标准状态:

      只有BIT02 PLL_LOCK, BIT03 DCI_MATCH, BIT11 INIT_B_INTERNAL, BIT12 INIT_B_PIN的值必须是1;

      BIT08-10 MODE PINS,BIT21 SECURITY_STATUS, BIT25-26 BUS_WIDTH,BIT28 PUDC_B根据FPGA和板子具体的设定,可以为1或者0,其他都必须是0。

      如果一上电,状态字就表现出了非典型值,那么大概率硬件上就有错误或者不合理的地方了。比较典型的几个例子:

1. 状态字全0

REGISTER.CONFIG_STATUS 00000000000000000000000000000000

       这种情况,说明FPGA被强行控制在全局复位状态了。一般是硬件上PROGRAM_B管脚,或者INIT_B管脚被错误的拉到了地上,两个管脚上的有效电平为0.

非常偶尔的情况下,当DONE管脚被错误拉为0电平时也能出现此种状态字。

2. 状态字全1,或者一串1后面跟着一个到数个0(一般不超过4个)

REGISTER.CONFIG_STATUS 11111111111111111111111111111111

REGISTER.CONFIG_STATUS 11111111111111111111111111111110

REGISTER.CONFIG_STATUS 11111111111111111111111111111100

        这种一般是板子上设计的JTAG链里面不只一个FPGA器件,比如是Xilinx的FPGA和一个第三方的CPLD串联等。

        由于Vivado里面并没有第三方器件的BSDL文件,那么在扫描整个JTAG链时,它无法识别链中各器件的型号以及数目,所以往往从TDO管脚中移位出一串1来。如果Xilinx的FPGA位于链的末端(接近TDO的位置),那么有时可以识别出正确的FPGA型号。但是这种情况仍然无法正确进行将要进行的配置操作。另外很多例子中则是FPGA的型号也被识别错误了。

解决方案如下:

https://www.xilinx.com/support/answers/61312.html

Unknown Device/Many Unknow Devices

        此时,不要说状态字无法检测了,整个JTAG已经无法正确扫描,Vivado里面无法识别出任何器件。这一般是板子上的JTAG接口的TDO或者链中最后一个器件的输出管脚TDO,被短接到了地平面上。

        除了上述典型情况,当然还有很多一上电就无法继续配置的情况,原因不胜枚举。这种情况下请详细描述你的JTAG链构成,读出当前的状体字(如何还能够读的话),如果状态字正常,可以接下来进行配置操作。或者是在你的配置失败后,保留失败现场再连接好板子和电脑继续读出状态字。

       如果你的板子已经重新上下电了,那么当时失败的场景也就消失了。这也就是我们一再强调失败后要保留现场,板子上要保留JTAG接口的原因。当然在设计成熟后,或者实验室调试工作结束后,可以去掉JTAG接口以期得到产品更高的安全性。

配置完成后,得到的状态字如下:

REGISTER.CONFIG_STATUS 00010010100100000111110111111100


注意其中的:

BIT02 PLL_LOCK, BIT03 DCI_MATCH, 绝大多数情况已经变为1;

BIT04 EOS,BIT05 GTS, BIT06 GWE, BIT07 GHITH,以及BIT11 INIT_BINTERNAL, BIT12 INIT_B_PIN,BIT13 DONE_INTERNAL, BIT14 DONE_PIN必然是1;

BIT18-20 STARTUP_STATTE应该是100;

BIT25-26 BUS_WIDTH应该是检测出了正确的配置位宽,或者在serial的情况下,保持默认的01值;

其他BIT01 DECRYPTOR, BIT09-10 MODE_PINS, BIT21-23 SECURITY_STATUS, BIT28 PUDC_B, BIT30CFGBVS_PIN, 根据你的使用,有可能是其他的0或者1组合。

RESERVED的不用管。

如果不是这种结果,那么就要看看出什么问题了。

在一些相对简单,典型的情况下,只看某一位就可以直接得到想要的答案。

BIT00的CRC error为1

在不是状态字全1的情况下CRC error位为1,说明配置出现了CRC错误。这是一种很常见,但比较难修复的错误,因为CRC错误的原因一般是因为板子上的信号质量(SI, Signal Integrity)不行,传输数据的过程中0/1电平判决错误,导致配置数据写入失败。

如何确定真的是SI问题呢?看失败概率。CRC错误一般是随机出错的,并不一定100%失败(除非板子的信号差得没法用了,这个一般不会)。那么配置文件中01翻转的次数越少,出错的概率越小。你可以生成一个只点亮板上一盏LED的小测试设计,此时bit文件中有效数据(1)非常少,试着下载该bit看看,是不是配置失败率降低了?如果是,那么基本可以确定了。

解决办法

一旦出现这种情况,可以尝试的办法有:

1. 降低CCLK频率

2. 在CCLK的输入端(以及输出端),加入合适的端接电路

3. 换用更高质量的配置时钟(比如使用质量较好的晶振通过EMCCLK提供时钟)

4. 改善数据链路的信号质量,如果对待CCLK,同样在数据通路上加入合适的端接匹配电路。

总而言之,要做的就是改善板上的信号质量。如果板子SI实在太差,那只有改板,或者尝试下其他配置方式了。

其他位都正常,BIT13 DONE_INTERNAL也为1了,但是BIT14 DONE_PIN为0,FPGA不工作!

       这种情况,其实配置数据已经完整、正确的送入FPGA并且被接收了,但是FPGA的DONE管脚连接不正确,导致DONE没有或者没有在规定时间内上拉到要求的电平,从而导致FPGA最终的启动失败。

       Xilinx的FPGA,一般要求DONE管脚上外加一个上拉电阻(330欧, 4.7K欧等,不同系列要求不同,请参照对应的Configuration User Guide)。如果这个上拉电阻没有加,或者加的阻值过大或过小,那么DONE管脚无法在规定的时间里面达到高电平,此时内部配置控制器会认为配置失败了,典型情况就是DONE internal为高(内部数据接收完毕,内部释放了),但是DONE外部管脚为低。

       此时需要做的,就是检查PCB上DONE部分的设计,看看是不是有和其他管脚相连的情况,被其他管脚强行拉低了。或者是设计的DONE点亮LED灯电路不合理, LED通电后把DONE管脚的电平降为低电平。

        如果你不清楚如何设计这部分电路,从 www.xilinx.com 上,找到一款和你使用的FPGA型号相同或者同系列的开发板,参考它的原理图设计。

BIT29 BAD PACKET error

       Bit29为1,大概率也是CRC错误。这不过这个CRC错误比较特殊,出错位跑到了配置文件里面的命令上,导致配置命令变成了一个无效无意义的指令。此时状态字会报出bad packet error。

       和CRC错误的随机性一样,多次重复加载过程,大概率出错的数据位下次落到其他的数据上。由于配置数据的数量远远大于配置命令,那么很有可能下次出错看到的是BIT00 CRC ERROR为1.

       如果每次都是BAD PACKET error,更要怀疑使用的配置文件已经损坏。比如进行了非法改写。Xilinx的任何配置文件,都是禁止手工修改的。

BIT15 IDCODE Error为1

        配置文件下载时,都要先经过FPGA的IDCODE校验。如果这一步通不过,那么后续的配置不会进行。这种情况下,看看配置文件的bit/bin/mcs是不是给错了。或者FPGA器件有silicon revision的变化。举个例子,有的系列ES芯片和Production芯片的配置文件是不能兼容的。这种错误情况,如果是用JTAG通过Vivado下载,那么log里面也会有相应的提示。

BIT13 DONE_INTERNAL+ BIT14 DONE_PIN均为0

       这也是一种较常见的错误。此时要重点检查一下BIT07 GHIGH位,看看它是不是1。如果是,那么大概率是,你的CCLK时钟给的不够多。FPGA在接收完所有的配置数据后,还需要一定数量的CCLK时钟去完成内部的初始化。如果发送端,此时常常是一个CPU用Slave模式加载,认为有效数据结束,强行停止了进一步的时钟发送,那么有时可以观测到此种状况。此时去检查BIT18-20 STARTUP_STATE,根据具体的情况,也有一定概率看到不是预期的100.

        标准的做法是,在默认设置下持续发送CCLK时钟,直至检测到DONE管脚已经拉高,然后再多发送至少64个时钟信号。如果修改了配置默认设置,比如选择了wait for PLL to lock,那么需要更多的时钟信号。

状态字看起来和没有发出配置数据,即和刚上电的表现一样。

      这种情况,说明所有发出的配置数据都被FPGA忽略掉了,因为它不认为你发送过来的是有效配置数据。

       FPGA的配置文件里面,有一个数据同步头,一般是AA 99 55 66。如果由于某种原因,这个同步头FPGA都没有认出来,那么后续的数据会被它全部忽略。

一般原因

1. 在非serial配置模式中,没有正确的做Byte Swap;

2. 配置文件生成时,BPI数据线宽设置不对(x8, x16, x32选错了)

3. SPI的x1, x2, x4选择错误;

4. 严重的板级SI问题导致的CRC错误;

        以上列举了常见的一些配置错误和其状态字的相应表现。需要注意的是,状态字寄存器有32位,其组合可以说是相当多的。除了上述情况,配置失败定位还可能需要结合状态字,加载过程中log文件,硬件设计原理图和工具版本信息,以及通过其他一些配置接口在不同条件下去对比测试才能逐步定位。 作者:硬件光阴 https://www.bilibili.com/read/cv26835920/?spm_id_from=333.999.0.0 出处:bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/526147.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

读书笔记之《理解和改变世界》:从信息知识智能的本质看AI

《理解和改变世界: 从信息到知识与智能》作者:是(法) 约瑟夫希发基思, 原作名: Understanding and Changing the World: From Information to Knowledge and Intelligence,2023年出版。 约瑟夫希发基思(Joseph Sifakis)&#xff…

Java高频面试之并发篇

有需要互关的小伙伴,关注一下,有关必回关,争取今年认证早日拿到博客专家 并行和并发有什么区别? 并行是同时执行多个任务,而并发是多个任务在一段时间内交替执行。并行(Parallel)是指同时执行多个任务或操作,通过同时…

Java开发:对象间复制属性,方法归纳

在Java开发中,对象间复制属性是一项常见的任务,特别是在处理层(如控制器层)与服务层或数据传输对象(DTOs)之间的数据转换时。有多种方法可以实现User对象到UserDTO对象的属性复制,下面列举了几种…

浅析开源内存数据库Fastdb

介绍: Fastdb是免费开源内存数据库,其优秀的性能,和简洁的C代码,让我学习使用过程中收益颇多,但是国内中文相关研究的文章相当稀少,外文我查询相当不便。有兴趣的朋友可以通过以下网站访问:Mai…

深入浅出计算机网络 day.1 概论③ 电路交换、分组交换和报文交换

人无法同时拥有青春和对青春的感受 —— 04.3.9 内容概述 01.电路交换、分组交换和报文交换 02.三种交换方式的对比 一、电路交换、分组交换和报文交换 1.电路交换 计算机之间的数据传送是突发式的,当使用电路交换来传送计算机数据时,其线路的传输效率一…

Day33-计算机基础3

Day33-计算机基础3 1.根据TCP/IP进行Linux内核参数优化1.1 例1:调整访问服务端的【客户端】的动态端口范围 ,LVS(10-50万并发),NGINX负载,SQUID缓存服务,1.2 企业案例:DOS攻击的案例&#xff1a…

垃圾回收:JavaScript内存管理的利器

🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…

React-路由导航

1.声明式路由导航 1.1概念 说明&#xff1a;声明式导航是指通过在模版中通过<Link/>组件描述出要跳转到哪里去&#xff0c;比如后台管理系统的左侧菜单通常使用这种方式进行。 import {Link} from "react-router-dom" const Login()>{return (<div>…

CentOS 7.6安装部署Seafile服务器

今天飞飞和你们分享CentOS 7.6上安装基于MySQL/MariaDB的Seafile服务器的方法&#xff0c;包括下载和安装7.0.5版本、配置数据库、启动服务器等步骤。安装成功后&#xff0c;需要通过nginx反向代理才能访问seafile服务。 通过预编译好的安装包来安装并运行基于 MySQL/MariaDB …

2.4_2 死锁的处理策略——预防死锁

2.4_2 死锁的处理策略——预防死锁 &#xff08;一&#xff09;破坏互斥条件 互斥条件&#xff1a;只有对必须互斥使用的资源的争抢才会导致死锁。 如果把只能互斥使用的资源改造为允许共享使用&#xff0c;则系统不会进入死锁状态。比如&#xff1a;SPOOLing技术。操作系统可以…

【操作系统概念】第12章:大容量存储阶段

文章目录 0.前言12.1 概述12.2磁盘结构12.3 磁盘调度12.3.1 FCFS调度12.3.2 SSTF调度12.3.3 SCAN调度12.3.4 C-SCAN调度12.3.5 如何选择磁盘调度 0.前言 文件系统从逻辑上来看包括三部分。第10章讨论了文件系统的用户和程序员的接口。第11章描述了操作系统实现这种接口的内部数…

手机APP测试——如何进行安装、卸载、运行?

手机APP测试——主要针对的是安卓( Android )和苹果IOS两大主流操作系统,主要考虑的就是功能性、兼容性、稳定性、易用性、性能等测试&#xff0c;今天先来讲讲如何进行安装、卸载、运行的内容。 一、App安装 1、点击运行APP安装包,检测安装包是否正常; . 2、进入[安装向导]…