深度学习图像算法工程师--面试准备(2)

深度学习面试准备

深度学习图像算法工程师–面试准备(1)
深度学习图像算法工程师–面试准备(2)


文章目录

  • 深度学习面试准备
  • 前言
  • 一、Batch Normalization(批归一化)
    • 1.1 具体步骤
    • 1.2 BN一般用在网络的哪个部分
  • 二、Layer Normalization(层归一化)
  • 三、 Internal Covariate Shift
  • 总结


前言

参考文章


一、Batch Normalization(批归一化)

  • BatchNormalization的作用是通过规范化的手段,将越来越偏的分布拉回到标准化的分布,使得激活函数的输入值落在激活函数对输入比较敏感的区域,从而使梯度变大,加快学习收敛速度,避免梯度消失的问题。
  • 使得每层网络的输入都服从(0,1)0均值,1方差分布,如果不进行BN,那么每次输入的数据分布不一致,网络训练精度自然也受影响。
  • 在Batch中进行 Normalization 计算,其实就是在每个通道进行一次计算,即计算范围是 [Batch, 1, Height,Width],计算次数是 Channel。

1.1 具体步骤

在这里插入图片描述

  1. 计算样本均值。
  2. 计算样本方差。
  3. 样本数据标准化处理。
  4. 进行平移和缩放处理。引入了γ和β两个参数。来训练γ和β两个参数。引入了这个可学习重构参数γ、β,让我们的网络可以学习恢复出原始网络所要学习的特征分布。

1.2 BN一般用在网络的哪个部分

先卷积再激活做BN
Conv+BN+Relu
Batch normalization 的 batch 是批数据, 把数据分成小批小批进行 stochastic gradient descent. 而且在每批数据进行前向传递 forward propagation 的时候, 对每一层都进行 normalization 的处理。

二、Layer Normalization(层归一化)

LN和BN不同,LN是根据样本的特征数来做归一化的,完全独立于batch size。在一个Layer中进行计算,可以理解是一个样本中进行Normalization,即计算范围是 [1, Channel, Height, Width],计算次数是 Batch。
常应用于循环神经网络(RNN)等结构,以解决对于不定长度序列的输入数据的归一化问题。

三、 Internal Covariate Shift

Internal Covariate Shift(内部协变量转移)是指神经网络在训练过程中每一层输入数据分布的变化,即随着网络参数的更新,每一层的输入数据的分布也会发生变化。这种内部协变量转移可能会导致训练过程变得更加困难,因为每一层都需要适应不断变化的输入数据分布。

Internal Covariate Shift 的问题在于,当神经网络每一层的输入数据的分布发生变化时,之前学习到的权重可能就不再适用,这会导致训练过程变得不稳定,需要更小的学习率和更仔细的调参来收敛。同时,由于每一层的输入数据分布的变化,网络可能需要更多的训练样本才能学到有效的表示。

为了解决 Internal Covariate Shift 的问题,批量归一化(Batch Normalization)被引入到神经网络中。批量归一化通过对每一层的输入数据进行归一化,使得每层的输入数据分布保持稳定,有助于加速训练过程、提高模型的泛化能力,并且减少对初始权重的依赖。


总结

  • BN的优点:

  • 可以解决“Internal Covariate Shift”

  • 解决梯度消失的问题(针对sigmoid),加快收敛速度。

  • 对初始权重不那么敏感:BN 使得网络对初始权重的选择不那么敏感,减少了调参的困难。

  • BN的缺点:

  1. 计算代价:BN 需要额外的计算量来计算均值和方差,可能会增加训练时间。
  2. 不适用于小批量数据:在小批量数据上表现可能不稳定,因为均值和方差的估计可能不准确。
  • LN的优点:
  1. 不依赖于batch size。
  2. 适用于RNN;
  • LN的缺点:
  1. 不适用于CNN。
  2. 针对具有多个连续特征的数据,进行特征之间的缩放,可能会导致量纲差异消失。
  3. 局部归一化:LN 是在每个样本中所有特征的维度上进行归一化,可能会丢失通道间的信息,不够全局。
  4. 缓慢的收敛速度:相对于 BN,LN 可能导致收敛速度较慢,需要更多的训练时间。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/526413.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

docker 子网

当需要给容器分配指定 ip ,为避免ip 冲突,指定容器子网处理 创建 subnet 子网 docker network create --subnet 10.0.0.0/24 --gateway 10.0.0.1 subnet-testdocker network ls NETWORK ID NAME DRIVER SCOPE ... f582ecf297bc sub…

Windows+conda+TensorRT

WindowsAnaconda配置TensorRT的教程,通过此教程配置完TensorRT后,可以在Anaconda的虚拟环境内使用TensorRT 本文环境为win10 condacuda11.2 利用conda 创建一个虚拟环境yolov8, conda create -n yolov8 python3.9安装CudaToolKit、安装CUD…

Redis精讲

redis持久化 RDB方式 Redis Database Backup file (redis数据备份文件), 也被叫做redis数据快照. 简单来说就是把内存中的所有数据记录到磁盘中. 快照文件称为RDB文件, 默认是保存在当前运行目录. [rootcentos-zyw ~]# docker exec -it redis redis-cli 127.0.0.1:6379> sav…

Normalizer(归一化)和MinMaxScaler(最小-最大标准化)的区别详解

1.Normalizer(归一化)(更加推荐使用) 优点:将每个样本向量的欧几里德长度缩放为1,适用于计算样本之间的相似性。 缺点:只对每个样本的特征进行缩放,不保留原始数据的分布形状。 公式…

提升工作效率,告别Excel,尝试Zoho CRM客户管理!

曾经有客户咨询我们:“EXCEL管理客户功能不够用,但是又觉得CRM管理系统太麻烦,应该如何选择?”这篇文章就告诉您:EXCEL在客户管理方面都有哪些局限性?CRM管理系统都有哪些优势?初创企业应该怎样选择适合的C…

Shell常用脚本:文件或目录一键同步到多台服务器

注意: 将本地文件,同步到【/opt/module/script/xsyncByFileIp.txt】里面的目标机器 xsyncByFile.sh #!/bin/bash# 入参参数个数 argsCount$#if(($argsCount0)); thenecho "同步失败:请输入待同步的文件或者目录" exit; fiecho &q…

二分与前缀和

789. 数的范围 - AcWing题库 import java.util.*;public class Main{static int N 100010;static int[] a new int[N];public static void main(String[] args){Scanner sc new Scanner(System.in);int n sc.nextInt();int m sc.nextInt();for(int i 0; i < n; i ){…

7-16 计算符号函数的值

对于任一整数n&#xff0c;符号函数sign(n)的定义如下&#xff1a; 请编写程序计算该函数对任一输入整数的值。 输入格式: 输入在一行中给出整数n。 输出格式: 在一行中按照格式“sign(n) 函数值”输出该整数n对应的函数值。 输入样例1: 10输出样例1: sign(10) 1输入样…

跨域报错(预请求(OPTIONS)的问题)

查原因 是预请求(OPTIONS)的问题 解决方法&#xff08;后端改&#xff09; 指路博客.NET处理VUE OPTIONS请求问题_.net option请求-CSDN博客

GTH手册学习注解

CPLL的动态配置 终于看到有这个复位功能了 QPLL SWITCHing需要复位 器件级RESET没发现有管脚引出来 两种复位方式&#xff0c;对应全复位和器件级复位 对应的复位功能管脚 改那个2分频的寄存器说明段&#xff0c;复位是自动发生的&#xff1f;说明可能起效了&#xff0c;但是分…

本地GenAI工具箱:Mixlab-nodes

在去年暑期夏令营上&#xff0c;我在[ 人工智能创作与数字艺术 ]这门课上重点讲解了叙事技术的发展&#xff0c;当时市面上没有一体化的解决方案&#xff0c;只能零散地使用各种产品or开源项目。 今年&#xff0c;我们的课程上将使用一体化的解决方案&#xff0c;实践叙事技巧并…

使用 Docker 部署 Stirling-PDF 多功能 PDF 工具

1&#xff09;Stirling-PDF 介绍 大家应该都有过这样的经历&#xff0c;面对一堆 PDF 文档&#xff0c;或者需要合并几个 PDF&#xff0c;或者需要将一份 PDF 文件拆分&#xff0c;又或者需要调整 PDF 中的页面顺序&#xff0c;找到的线上工具 要么广告满天飞&#xff0c;要么 …