【C语言】深入理解指针(进阶篇)

一、数组名的理解

数组名就是地址,而且是数组首元素的地址。

任务:运行以下代码,看数组名是否是地址。

#include <stdio.h>
int main()
{int arr[] = { 1,2,3,4,5,6,7,8,9,0 };printf("&arr[0] = %p\n", &arr[0]);printf("arr     = %p\n", arr);return 0;
}

输出结果:

运行以上代码,我们发现数组名和数组首元素的地址打印的结果一模一样,数组名就是数组首元素(第一个元素)的地址

疑问:数组名如果就是首元素的地址,那么下面的代码证明理解?

#include <stdio.h>
int main()
{int arr[] = { 1,2,3,4,5,6,7,8,9,0 };printf("%d\n", sizeof(arr));return 0;
}

 输出结果:40,如果arr是数组首元素的地址,那么输出的应该是4/8才对。

其实数组名就是数组首元素(第一个元素)的地址是对的,但是有两个例外:

  • sizeof(数组名):sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小,单位是字节。
  • &数组名:这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素的地址是有区别的)

除此之外,任何地方使用数组名,数组名都表示首元素的地址。

要了解arr和&arr有什么区别,请看以下代码:

#include <stdio.h>
int main()
{int arr[] = { 1,2,3,4,5,6,7,8,9,0 };printf("&arr[0]   = %p\n", &arr);printf("&arr[0]+1 = %p\n", &arr+1);printf("arr       = %p\n", arr);printf("arr+1     = %p\n", arr+1);printf("&arr       = %p\n", &arr);printf("&arr+1     = %p\n", &arr+1);return 0;
}

 输出结果:

这里我们发现&arr[0]和&arr[0]+1相差4个字节,arr和arr+1相差4个字节,这是因为&arr[0]和arr都是首元素的地址,+1就是跳过一个元素。

都是&arr和&arr+1相差40个字节,这里是因为&arr是整个数组的地址,+1操作就是跳过整个数组的。

到这里大家应该搞清楚数组名的意义了吧。

数组名是数组首元素的地址,但是有两个例外( sizeof(arr)和&arr )。

二、使用指针访问数组

有了前面的知识支持,再结合数组的特点,我们可以很方便的使用指针访问数组了。

#include <stdio.h>
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);int i = 0;int* p = arr;//输入for (i = 0; i < sz; i++){scanf("%d", p + i);//p+i 是地址}//输出for (i = 0; i < sz; i++){printf("%d ", *(p + i));//*(p+1) 解引用操作符(*),是数值}return 0;
}

 这个代码搞明白了,我们再试一下,如果我们再分析一下,数组名arr是数组首元素的地址,可以赋值给p,其实数组名arr和p在这里是等价的。那我们可以使用arr[i]访问数组元素,那p[i]是否也可以访问数组呢?

#include <stdio.h>
int main()
{int arr[10] = { 0 };int sz = sizeof(arr) / sizeof(arr[0]);int i = 0;int* p = arr;//输入for (i = 0; i < sz; i++){scanf("%d", p + i);//scanf("%d", arr + i);//也可以写成这样}//输出for (i = 0; i < sz; i++){printf("%d ", p[i]);}return 0;
}

在第17行的地方,将*(p+i)换成p[i]也是能够正常打印的,所以本质上p[i]等价于*(p+i)

因为数组名arr和p是等价的,所以arr[i]等价于*(arr+i)。数组元素的访问在编译器的时候,也是转换成首元素的地址+偏移量求出元素的地址,然后解引用来访问的。

三、一维数组传参的本质

我们知道数组是可以传递给函数的,这里我们讨论一下数组传参的本质。

首先从一个问题开始,我们之前都是在函数外部计算数组的元素个数,那我们可以把函数传给一个函数后,在函数内部求数组的元素个数吗?

#include <stdio.h>
void test(int arr[])
{int sz2 = sizeof(arr) / sizeof(arr[0]);printf("sz2 = %d\n", sz2);
}
int main()
{int arr[10] = { 0 };int sz1 = sizeof(arr) / sizeof(arr[0]);printf("sz1 = %d\n", sz1);test(arr);return 0;
}

 输出结果:

 在函数内部求数组的元素个数,输出的结果是1,并没有正确获得元素个数。

这就要学习数组传参的本质了,第一节数组名的理解,我们知道:数组名就是数组首元素的地址;那么在数组传参的时候,传递的是数组名,也就是说数组传参本质上传递的是数组首元素的地址

 所以函数形参的部分理论上应该是用指针变量来接收首元素的地址。那么在函数内部写sizeof(arr)计算的是一个地址的大小(单位字节),而不是数组的大小(单位字节)。正是因为函数的参数部分本质是指针,所以在函数内部是没有办法求数组元素个数的

#include <stdio.h>
void test2(int arr[])
{int sz2 = sizeof(arr) / sizeof(arr[0]);printf("sz2 = %d\n", sz2);
}
void test3(int *p)
{int sz3 = sizeof(p) / sizeof(p[0]);printf("sz3 = %d\n", sz3);
}
int main()
{int arr[10] = { 0 };int sz1 = sizeof(arr) / sizeof(arr[0]);printf("sz1 = %d\n", sz1);test2(arr);test3(arr);return 0;
}

 总结:一维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式

四、冒泡排序

冒泡排序的核心思想就是:两两相邻的元素进行比较。

方法一:

#include <stdio.h>
bubble_sort(int arr[], int sz)
{int i = 0;for (i = 0; i < sz-1; i++){int j = 0;for (j = 0; j < sz - 1 - i; j++){if (arr[j]>arr[j+1]){int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;}}}
}
int main()
{int arr[10] = { 3,1,7,5,8,9,0,2,4,6 };int sz = sizeof(arr) / sizeof(arr[0]);//冒泡排序bubble_sort(arr,sz);int i = 0;//打印输出for (i = 0; i < sz; i++){printf("%d ", arr[i]);}
}

方法二:优化

#include <stdio.h>void bubble_sort(int arr[], int sz)//参数接收数组元素个数
{int i = 0;for (i = 0; i < sz - 1; i++){int flag = 1;//假设这⼀趟已经有序了int j = 0;for (j = 0; j < sz - i - 1; j++){if (arr[j] > arr[j + 1]){flag = 0;//发⽣交换就说明,⽆序int tmp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tmp;}}if (flag == 1)//这⼀趟没交换就说明已经有序,后续⽆序排序了break;}
}
int main()
{int arr[10] = { 3,1,7,5,8,9,0,2,4,6 };int sz = sizeof(arr) / sizeof(arr[0]);//冒泡排序bubble_sort(arr, sz);int i = 0;//打印输出for (i = 0; i < sz; i++){printf("%d ", arr[i]);}
}

五、二级指针

5.1 指针的定义

一级指针:是一个指针变量,指向一个普通变量,并保存该普通变量的地址

二级指针:是一个指针变量,指向一个一级指针,并保存该一级指针的地址

 二级指针是一个指向指针的指针变量。它存储了一个指针的地址,该指针又指向另一个变量的地址。

二级指针画图

 5.2 引入二级指针

#include <stdio.h>
int main()
{int a = 10;int b = 20;int* pa = &a;int** ppa = &pa;//一次解引用*ppa,此时类型int**ppa = &b;//二次解引用**ppa,此时类型int**ppa = 200;return 0;
}

逻辑关系如下:

a是一个int类型的变量,一级指针pa指向a,并保存a的地址。

二级指针变量ppa指向一级指针pa,并保存pa的地址

二级指针ppa解引用操作:

  • 一次解引用:*ppa的类型变成 int*(代表一级指针pa)间接改变了pa的指向,从a的地址变成了b的地址。
  • 二次解引用:ppa的类型变成了 int (代表变量b),此时ppa = 200;(等价于b=200)。

(1)下面举个例子:

#include <stdio.h>
int main()
{//普通变量int a1 = 1;int a2 = 1;int a3 = 1;//一级指针int* p1 = &a1;int* p2 = &a2;int* p3 = &a3;//二级指针int** s = &p1;
}

 (假设a1,a2.a3空间连续,p1,p2,p3空间连续)逻辑图如下:

表达式移动字节数/值的变化类型
s+1sizeof(int*)*1 =  4*1  =  4int**
*s+1sizeof(int)*1  =  4*1  =  4int*
**s+1a1+1  =  1+1  =  2int

分析:

  • s+1 表示二级指针s指向了p2,移动的字节数需要根据指向的数据的空间大小进行计算sizeof(int*)*1 = 4字节,此时s+1还是二级指针,所以类型是int*。
  • *s+1 先对s进行一次解引用为*s,相当于操控一级指针p1,然后*s+1,相当于p1指向了a2的地址,所以移动sizeof(int)*1 = 4字节,此时的类型为int*。
  • **s+1 先对s进行二次解引用为**s,相当于操控变量a1,然后a1加1,所以a1=2;a1的类型是int。

总结:在对二级指针变量s的移动时,s都会将已经保存的一级指针的类型进行解析步长(s+sizeof(p)*n);而一级指针*s(相当于p一级指针变量)会以保存的变量的类型进行解析步长(*s+sizeof(a)*n)。

 六、指针数组

指针数组是多个指针变量,以数组的形式存储在内存中,数组中的每个元素都是一个地址(指针),占有多个指针存储空间。指针数组即存放指针的数组

指针数组的声明方式为:数据类型 *数组名[数组长度]。

 6.1 指针数组模拟二维数组

#include <stdio.h>
int main()
{int arr1[] = { 1,2,3,4,5 };int arr2[] = { 2,3,4,5,6 };int arr3[] = { 3,4,5,6,7 };//数组名是数组首元素的地址,类型是int*,可以存放在parr数组中int* parr[3] = { arr1,arr2,arr3 };int i = 0;for (i = 0; i < 3; i++){int j = 0;for(j = 0; j < 5; j++){printf("%d ", parr[i][j]);}printf("\n");return 0;}
}

parr数组的画图演示

 parr[i]是访问parr数组的元素,parr[i]找到的数组元素指向了整型一维数组,parr[i][j]就是整型一维数组中的元素。

上述代码模拟出的二维数组的效果,实际上并非完全是二维数组,因为每一行并非是连续的

七、数组指针变量

7.1 数组指针变量是什么

上一节我们学习了指针数组,指针数组是一种数组,数组中存放的是地址(指针)。

数组指针是指针变量,是存放数组的地址,能够指向数组的指针

任务: int (*p)[5] = { },如何理解?

优先级

运算符

名称或含义

使用形式

结合方向

说明

1

[]

数组下标

数组名[常量表达式]

左到右

--

()

圆括号

(表达式)/函数名(形参表)

--

.

成员选择(对象)

对象.成员名

--

->

成员选择(指针)

对象指针->成员名

--

 这里()和[ ]优先级相同,根据结合律,从左到右运算

()里是*p,p先和*结合,先定义了指针,说明p是一个指针变量,然后指向的是一个大小为5个整数的数组。所以p是一个指针,指向一个数组,叫数组指针。

int (*p)[5]的画图

 7.2 数组指针变量怎么初始化

数组指针变量是依赖存放数组地址的,那么怎么获取数组的地址呢?这就要用到&数组名

 如果要存放数组的地址,就得存放在数组指针变量中,如下:

nt arr[10] = {0};
&arr;//得到的就是数组的地址
int (*p)[10] = &arr;

 我们调试可以看到&arr和p的类型是完全一致的。

数组指针类型解析:

int (*p) [10] = &arr;
|       |      |
|       |      |
|       |      p指向数组的元素个数
|        p是数组指针变量名
p指向的数组的元素类型
 

 7.3 二维数组传参的本质

有了数组指针的理解,我们来讲解一下二维数组传参的本质。

过去我们有一个二维数组,徐亚传参给一个函数的时候,我们是这样写的:

#include <stdio.h>
void test(int arr[3][5],int r,int c)
{int i = 0;for (i = 0; i < r; i++){int j = 0;for (j = 0; j < c; j++){printf("%d ", arr[i][j]);}printf("\n");}
}
int main()
{int arr[3][5] = { {1,2,3,4,5},{2,3,4,5,6},{3,4,5,6,7} };test(arr, 3, 5);return 0;
}

这里实参是二维数组,形参也写成二维数组的形式,那还有什么其他写法吗?

这里我们再次理解一下二维数组,二维数组起始可以看做是每个元素是一维数组的数组,也就是二维数组的每个元素是一个一维数组。那么二维数组的首元素就是第一行,是一维数组。

arr数组

 所以,根据数组名是数组首元素的地址这个规则,二维数组的数组名表示的就是第一行的地址,是一维数组的地址。根据上面的例子,第一行的一维数组的类型就是int[5],所以第一行的地址的类型就是数组指针类型iny(*)[5]。那就意味着二维数组传参本质上也是传递地址,传递的是第一行这个一维数组的地址。那么形参也是可以写成指针形式的。如下:

#include <stdio.h>
void test(int (*p)[5], int r, int c)
{int i = 0;for (i = 0; i < r; i++){int j = 0;for (j = 0; j < c; j++){printf("%d ", *(*(p+i)+j));}printf("\n");}
}
int main()
{int arr[3][5] = { {1,2,3,4,5},{2,3,4,5,6},{3,4,5,6,7} };test(arr, 3, 5);return 0;
}

总结:二维数组传参,形参的部分可以写成数组,也可以写成指针形式。

八、函数指针变量

8.1 函数指针变量的创建

函数指针即定义一个指向函数的指针变量。

 定义格式如下:

int (*p)(int x, int  y);  //注意:这里的括号不能掉

 这个函数的类型是有两个整型参数,返回值是整型。

思考:函数是否有地址?

让我们看看以下代码:

#include <stdio.h>
void test()
{
printf("hehe\n");
}
int main()
{
printf("test: %p\n", test);
printf("&test: %p\n", &test);
return 0;
}

输出结果如下:

 观察发现,确实打印出来了地址,所以函数是有地址的,函数名技术函数的地址,当然也可以通过&函数名的方法获取函数的地址。

如果我们要将函数的地址存放起来,就得创建函数指针变量,函数指针变量的写法其实和数组指针变量非常类似。如下:

void test()
{printf("hehe\n");
}
void (*pf1)() = &test;
void (*pf2)() = test;int Add(int x, int y)
{return x + y;
}
int(*pf3)(int, int) = Add;
int(*pf3)(int x, int y) = &Add;//x和y写上或者省略都是可以

 函数指针类型解析:

int (*pf3) (int x, int y)
|        |       ------------
|        |            |
|        |            pf3指向函数的参数类型和个数的交代
|        函数指针变量名
pf3指向函数的返回类型


int (*) (int x, int y)     //pf3函数指针变量的类型

 8.2 函数指针变量的使用

通过函数指针调用指针指向的函数。

#include <stdio.h>
int Add(int x, int y)
{return x + y;
}
int main()
{int (*pf)(int, int) = Add;printf("%d\n", (*pf)(2, 3));printf("%d\n", pf(3,5));return 0;
}

输出结果:

九、函数指针数组

数组是一个存放相同类型数据的存储空间,我们已经学习了指针数组。如下:

int *arr[10];
//数组的每个元素是int*

那要把函数的地址存到⼀个数组中,那这个数组就叫函数指针数组,那函数指针的数组如何定义呢?

int (*parr1[3])();
int *parr2[3]();
int (*)() parr3[3];

答案是:parr1
parr1 先和 [] 结合,说明parr1是数组,数组的内容是什么呢?
是 int (*)() 类型的函数指针。
 

十、转移表

函数指针数组的用途:转移表

举例:计算机的一般实现

#include <stdio.h>
int add(int a, int b)
{return a + b;
}
int sub(int a, int b)
{return a - b;
}
int mul(int a, int b)
{return a * b;
}
int div(int a, int b)
{return a / b;
}
int main()
{int x, y;int input = 1;int ret = 0;do{printf("*************************\n");printf(" 1:add 2:sub \n");printf(" 3:mul 4:div \n");printf(" 0:exit \n");printf("*************************\n");printf("请选择:");scanf("%d", &input);switch (input){case 1:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = add(x, y);printf("ret = %d\n", ret);break;case 2:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = sub(x, y);printf("ret = %d\n", ret);break;case 3:printf("输⼊操作数:");scanf("%d %d", &x, &y);ret = mul(x, y);printf("ret = %d\n", ret);break;case 4:printf("输入操作数:");scanf("%d %d", &x, &y);ret = div(x, y);printf("ret = %d\n", ret);break;case 0:printf("退出程序\n");break;default:printf("选择错误\n");break;}} while (input);return 0;
}

使用函数指针数组的实现 

#include <stdio.h>
int add(int a, int b)
{return a + b;
}
int sub(int a, int b)
{return a - b;
}
int mul(int a, int b)
{return a * b;
}
int div(int a, int b)
{return a / b;
}
int main()
{int x, y;int input = 1;int ret = 0;int(*p[5])(int x, int y) = { 0, add, sub, mul, div }; //转移表do{printf("*************************\n");printf(" 1:add 2:sub \n");printf(" 3:mul 4:div \n");printf(" 0:exit \n");printf("*************************\n");printf("请选择:");scanf("%d", &input);if ((input <= 4 && input >= 1)){printf("输入操作数:");scanf("%d %d", &x, &y);ret = (*p[input])(x, y);printf("ret = %d\n", ret);}else if (input == 0){printf("退出计算器\n");}else{printf("输⼊有误\n");}} while (input);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/526551.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32驱动W5500作为客户端进行通讯

STM32驱动W5500作为客户端进行通讯 模块简介引脚说明接线代码部分代码测试是否通讯成功 模块简介 SR-ES1内嵌Wiznet的W5500芯片&#xff0c;使用硬件逻辑门电路实现TCP/IP协议栈的传输层及网络层&#xff08;如&#xff1a;TCP&#xff0c;UDP&#xff0c;ICMP&#xff0c;IPv…

C语言————字符函数与字符串函数

在编程的过程中&#xff0c;我们经常要处理字符和字符串&#xff0c;为了⽅便操作字符和字符串&#xff0c;C语⾔标准库中提供了⼀系列库函数&#xff0c;如追加&#xff0c;拷贝&#xff0c;替换等等接下来我们就学习⼀下这些函数&#xff0c;并且自实现。 gets 这个指令大家…

扩展CArray类,增加Contain函数

CArray不包含查找类的函数&#xff0c;使用不便。考虑扩展CArray类&#xff0c;增加Contain函数&#xff0c;通过回调函数暴露数组元素的比较方法&#xff0c;由外部定义。该方法相对重载数组元素的“”符号更加灵活&#xff0c;可以根据需要配置不同的回调函数进行比较 //类型…

分布式架构之Nacos配置中心

一、配置中心的意义 1、微服务中配置文件的问题 配置文件的问题&#xff1a; 配置文件的数量会随着服务的增加持续递增单个配置文件无法区分多个运行环境配置文件内容无法动态更新&#xff0c;需要重启服务 引入配置文件&#xff1a;刚才架构就会成为这样。是由配置中心统一…

惬意上手MySQL

大家好&#xff0c;我又来写博客了&#xff0c;今天给大家介绍一下MySQL,如果你只想让MySQL作为自己的辅助开发工具&#xff0c;那这一篇文章就够了&#xff0c;如果想作为一门语言来学习&#xff0c;那你可以看此文章了解一些基础。 MySQL介绍 数据库可分为关系型数据库和非关…

【NR 定位】3GPP NR Positioning 5G定位标准解读(七)- GNSS定位方法

前言 3GPP NR Positioning 5G定位标准&#xff1a;3GPP TS 38.305 V18 3GPP 标准网址&#xff1a;Directory Listing /ftp/ 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;一&#xff09;-CSDN博客 【NR 定位】3GPP NR Positioning 5G定位标准解读&#xff08;…

分布式解决方案

目录 1. 分布式ID1-1. 传统方案1-2. 分布式ID特点1-3. 实现方案1-4. 开源组件 1. 分布式ID 1-1. 传统方案 时间戳UUID 1-2. 分布式ID特点 全局唯一高并发高可用 1-3. 实现方案 方案总结&#xff1a; 号段模式 有两台服务器&#xff0c;给第一台服务器分配0-100&#xff0…

【重要公告】BSV区块链上线TypeScript SDK,未来将支持更多开发语言

​​发表时间&#xff1a;2024年2月21日 BSV区块链协会宣布上线JavaScript和TypeScript SDK&#xff08;即“标准开发工具包”&#xff09;。TypeScript SDK旨在为开发者提供新版统一核心代码库&#xff0c;以便利开发者在BSV区块链上开发能够任意扩容的应用程序。新上线的SDK替…

R语言更新版本

目录 一、更新R语言 1、安装最新的R语言版本 2、移动之前安装的packages 3、将Rstudio连接到最新的R语言 二、Rstudio更新 一、更新R语言 1、安装最新的R语言版本 查看当前R语言版本&#xff1a; R.version.string 下载最新的R语言安装包&#xff1a;R: The R Project…

前端框架的发展历程

文章目录 前言 一、静态页面时代 二、JavaScript的兴起 三、jQuery的出现 四、前端框架的崛起 1.AngularJS 2.React 3.Vue.js 五、面向组件化的发展趋势 总结 前言 前端框架的发展史就是一个不断进化的过程&#xff0c;它的发展和进化一定程度…

16 PyTorch 神经网络基础【李沐动手学深度学习v2】

1. 模型构造 在构造自定义块之前&#xff0c;我们先回顾一下多层感知机的代码。 下面的代码生成一个网络&#xff0c;其中包含一个具有256个单元和ReLU激活函数的全连接隐藏层&#xff0c; 然后是一个具有10个隐藏单元且不带激活函数的全连接输出层。 层和块 构造单层神经网咯…

【网络应用层协议】【MQTT】详解消息队列遥测传输协议MQTT(超详细)

目录 1. MQTT 协议简介 2. MQTT 的特点 3. MQTT 协议原理 4. MQTT协议中的订阅、主题、会话 1. MQTT 协议简介 MQTT&#xff08; Message Queuing Telemetry Transport&#xff0c;消息队列遥测传输协议 &#xff09;是一种消息列队传输协议&#xff0c;采用订阅、发布机制&…