【动态规划】【前缀和】【和式变换】100216. K 个不相交子数组的最大能量值

本文涉及知识点

动态规划汇总
C++算法:前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频

LeetCode 100216. K 个不相交子数组的最大能量值

给你一个长度为 n 下标从 0 开始的整数数组 nums 和一个 正奇数 整数 k 。
x 个子数组的能量值定义为 strength = sum[1] * x - sum[2] * (x - 1) + sum[3] * (x - 2) - sum[4] * (x - 3) + … + sum[x] * 1 ,其中 sum[i] 是第 i 个子数组的和。更正式的,能量值是满足 1 <= i <= x 的所有 i 对应的 (-1)i+1 * sum[i] * (x - i + 1) 之和。
你需要在 nums 中选择 k 个 不相交子数组 ,使得 能量值最大 。
请你返回可以得到的 最大能量值 。
注意,选出来的所有子数组 不 需要覆盖整个数组。
示例 1:
输入:nums = [1,2,3,-1,2], k = 3
输出:22
解释:选择 3 个子数组的最好方式是选择:nums[0…2] ,nums[3…3] 和 nums[4…4] 。能量值为 (1 + 2 + 3) * 3 - (-1) * 2 + 2 * 1 = 22 。
示例 2:
输入:nums = [12,-2,-2,-2,-2], k = 5
输出:64
解释:唯一一种选 5 个不相交子数组的方案是:nums[0…0] ,nums[1…1] ,nums[2…2] ,nums[3…3] 和 nums[4…4] 。能量值为 12 * 5 - (-2) * 4 + (-2) * 3 - (-2) * 2 + (-2) * 1 = 64 。
示例 3:
输入:nums = [-1,-2,-3], k = 1
输出:-1
解释:选择 1 个子数组的最优方案是:nums[0…0] 。能量值为 -1 。

提示:
1 <= n <= 104
-109 <= nums[i] <= 109
1 <= k <= n
1 <= n * k <= 106
k 是奇数。

动态规划

动态规划的状态表示

iK ∈ \in [0,k)
pre[j]表示从nums[0…j)选择前iK-1个子数组组成的表达式的最大和。最后一个子数组以nums[j-1]结尾。
dp[j]表示从nums[0…j)选择前iK个子数组组成的表达式的最大和。最后一个子数组以nums[j-1]结尾。

利用和式变换简化动态规划的转移方程

假定第iK个子数组为nums[i…j],maxK1[j] = M a x x : 0 j \Large Max_{x:0}^{j} Maxx:0jpre[j]。
如果iK是偶数:
d p [ j ] = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] + S u m [ 0... j ] − S u m [ 0... i − 1 ] ) dp[j] = Max_{i:1}^{j} (MaxmaxK1[i-1] + Sum[0...j]- Sum[0...i-1]) dp[j]=Maxi:1j(MaxmaxK1[i1]+Sum[0...j]Sum[0...i1]) → M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] − S u m [ 0... i − 1 ] ) + S u m [ 0... j ] \rightarrow Max_{i:1}^{j} (MaxmaxK1[i-1] - Sum[0...i-1])+ Sum[0...j] Maxi:1j(MaxmaxK1[i1]Sum[0...i1])+Sum[0...j]
令 m a x 1 ( j ) = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] − S u m [ 0... i − 1 ] ) 令max1(j) = Max_{i:1}^{j} (MaxmaxK1[i-1] - Sum[0...i-1]) max1(j)=Maxi:1j(MaxmaxK1[i1]Sum[0...i1])
一个式子包括两个式子,分别用前缀和优化性质。
显然max1(j+1) = max( max1(j),MaxmaxK1[j] - Sum[0…j])
这是前缀和的基础。
如果iK是偶数:
d p [ j ] = M a x i : 1 j ( M a x m a x K 1 [ i − 1 ] + S u m [ 0... i − 1 ] ) − S u m [ 0... j ] dp[j] = \Large Max_{i:1}^{j} (MaxmaxK1[i-1] + Sum[0...i-1])- Sum[0...j] dp[j]=Maxi:1j(MaxmaxK1[i1]+Sum[0...i1])Sum[0...j]

动态规划的初始值

pre全部为0。

动态规划的填表顺序

ik从0到iK-1,j从1到n。

特例

由于 k <= n,故一定能拆分成k组,前iK组的和一定大于等于 -1013 ,我们用-1014表示非法。

代码

核心代码

class Solution {
public:long long maximumStrength(vector<int>& nums, int k) {m_c = nums.size();vector<long long> pre(m_c+1);for (int iK = 0; iK < k; iK++){vector<long long> dp(m_c + 1, -1E14);if (1 & iK){Odd(dp, pre, nums,k-iK);}else{Even(dp, pre, nums, k - iK);}pre.swap(dp);}return *std::max_element(pre.begin(), pre.end());}void Odd(vector<long long>& dp, const vector<long long>& pre,const vector<int>& nums,const int x ){//奇数long long maxPre = -1E14,llMax = -1E14,llSum=0;for (int j = 1; j <= m_c ; j++){//假定第iK个子数组是nums[i,j],则最大值为:maxPre - sum[0...j] + sum[0...i),llMax=第一项和第三项合并maxPre = max(maxPre, pre[j-1]);llMax = max(llMax, maxPre + llSum);//第iK个子数组,以nums[j]开头			llSum += (long long)nums[j-1]*x;dp[j] = llMax - llSum;			}}void Even(vector<long long>& dp, const vector<long long>& pre, const vector<int>& nums, const int x){//偶数long long maxPre = (long long)-1E14, llMax = -1E14, llSum = 0;for (int j = 1; j <= m_c; j++){//假定第iK个子数组是nums[i,j],则最大值为:maxPre + sum[0...j] - sum[0...i),llMax=第一项和第三项合并maxPre = max(maxPre, pre[j-1]);llMax = max(llMax, maxPre - llSum);//第iK个子数组,以nums[j]开头			llSum += (long long)nums[j - 1] * x;dp[j] = llMax + llSum;			}}int m_c;
};

测试用例

template<class T, class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}
int main()
{vector<int> nums;int k;{Solution sln;nums = { -100000000, -10000000, 123, 234 }, k = 3;auto res = sln.maximumStrength(nums, k);Assert(-30000012, res);}{Solution sln;nums = { 1,2,3,-1,2 }, k = 3;auto res = sln.maximumStrength(nums, k);Assert(22, res);}{Solution sln;nums = { 12,-2,-2,-2,-2 }, k = 5;auto res = sln.maximumStrength(nums, k);Assert(64, res);}{Solution sln;nums = { -1,-2,-3 }, k = 1;auto res = sln.maximumStrength(nums, k);Assert(-1, res);}
}

优化

pre[j]表示从nums[0…j)选择前iK-1个子数组组成的表达式的最大和。最后一个子数组以nums[x]结尾,x ∈ \in [0,j)。

class Solution {
public:long long maximumStrength(vector<int>& nums, int k) {m_c = nums.size();vector<long long> pre(m_c + 1);for (int iK = 0; iK < k; iK++){vector<long long> dp(m_c + 1, -1E14);long long maxAdd = -1E14, maxSub = -1E14,maxPre = -1E14;long long llSum = 0;for (int j = 1; j <= m_c; j++){maxPre = max(maxPre, pre[j-1]);maxAdd = max(maxAdd, maxPre - llSum);maxSub = max(maxSub, maxPre + llSum);llSum += nums[j - 1]*(long long) ( k - iK );dp[j] = (iK & 1) ? (maxSub - llSum) : (maxAdd + llSum);}pre.swap(dp);}return *std::max_element(pre.begin(), pre.end());}int m_c;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/527008.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32FreeRTOS信号量(STM32cube高效开发)

一、信号量 &#xff08;一&#xff09;信号量概括 信号量是操作系统中重要的一部分&#xff0c;信号量是一种解决同步问题的机制&#xff0c;可以实现对共享资源的有序访问。 FreeRTOS 提供了多种信号量&#xff0c;按信号量的功能可分为二值信号量、计数型信号量、互斥信…

python版本原因导致的grpcio-tools-1.48.2安装失败

因为工作需要使用python开发grpc客户端&#xff0c;在mac电脑上通以下命令安装python的grpc依赖库总是不成功 pip3 install --no-cache-dir --force-reinstall -Iv grpcio1.48.2 grpcio-tools1.48.2 clang -Wsign-compare -Wunreachable-code -fno-common -dynamic -DNDEBUG …

图片在div完全显示

效果图&#xff1a; html代码&#xff1a; <div class"container" style" display: flex;width: 550px;height: 180px;"><div class"box" style" color: red; background-color:blue; width: 50%;"></div><div …

蓝桥杯嵌入式省赛模板构建——串口发送

介绍 串口发送&#xff1a;单片机发送数据给电脑 只需要掌握异步收发 PA9单片机发送数据&#xff0c;PA10单片机接收数据 波特率&#xff1a;每秒传输的二进制位数&#xff0c; 例&#xff1a;4800bps:每秒能传输4800个bit 由下图可知一帧 10个bit(加上启动位和停…

input中文输入法导致的高频事件

这是基本结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><title>中文输入法的高频事件</title&…

排查线上JVM CPU飙升使用率高和线程死锁问题

一、排查CPU飙升使用率高问题 在开始前新建一个 SpringBoot 项目构建CPU使用率高的场景&#xff1a; RestController public class JvmThread1Controller {ThreadPoolExecutor executor new ThreadPoolExecutor(10,15,2,TimeUnit.SECONDS,new LinkedBlockingDeque<>(5…

智慧城市的未来:利用数字孪生技术推动智慧城市的智能化升级

目录 一、引言 二、数字孪生技术概述 三、数字孪生技术在智慧城市中的应用 1、城市规划与建设 2、城市管理与运营 3、公共服务与民生改善 4、应急管理与灾害防控 四、数字孪生技术推动智慧城市的智能化升级的价值 1、提高城市管理的智能化水平 2、优化城市资源配置 …

2024年阿里云服务器个人一个月多少价格?5元/月

阿里云服务器一个月多少钱&#xff1f;最便宜5元1个月。阿里云轻量应用服务器2核2G3M配置61元一年&#xff0c;折合5元一个月&#xff0c;2核4G服务器30元3个月&#xff0c;2核2G3M带宽服务器99元12个月&#xff0c;轻量应用服务器2核4G4M带宽165元12个月&#xff0c;4核16G服务…

HTML静态网页成品作业(HTML+CSS)——花主题介绍网页设计制作(1个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有1个页面。 二、作品演示 三、代…

网络协议常见问题

网络协议常见问题 OSI&#xff08;Open Systems Interconnection&#xff09;模型OSI 封装 TCP/IP协议栈IP数据报的报头TCP头格式UDP头格式TCP (3-way shake)三次握手建立连接&#xff1a;为什么三次握手才可以初始化 Socket、序列号和窗口大小并建立 TCP 连接。每次建立TCP连接…

NeRF模型NeRF模型

参考视频&#xff1a;https://www.youtube.com/watch?vHfJpQCBTqZs&ab_channelVision%26GraphicsSeminaratMIT NeRF模型的输入输出: 输入: (x, y, z): 一个三维空间坐标,代表场景中的一个位置点(θ, φ): 视线方向,θ表示与y轴的夹角,φ表示与x轴的夹角,用两个角度可以…

win11家庭版docker和milvus

docker 1、官网下载docker文件Get Started | Docker&#xff0c;选择download for windows下载。 2、双击打开下载好的文件Docker Desktop Installer.exe&#xff0c;add shortcut to desktop选择√代表同意添加快捷键到桌面&#xff0c;如果不勾选就说明不创建快捷键&#x…