机器学习深度学习——卷积神经网络(LeNet)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er
🌌上期文章:机器学习&&深度学习——池化层
📚订阅专栏:机器学习&&深度学习
希望文章对你们有所帮助

卷积神经网络(LeNet)

  • 引言
  • LeNet
  • 模型训练
  • 小结

引言

之前的内容中曾经将softmax回归模型和多层感知机应用于Fashion-MNIST数据集中的服装图片。为了能应用他们,我们首先就把图像展平成了一维向量,然后用全连接层对其进行处理。
而现在已经学习过了卷积层的处理方法,我们就可以在图像中保留空间结构。同时,用卷积层代替全连接层的另一个好处是:模型更简单,所需参数更少。
LeNet是最早发布的卷积神经网络之一,之前出来的目的是为了识别图像中的手写数字。

LeNet

总体看,由两个部分组成:
1、卷积编码器:由两个卷积层组成
2、全连接层密集快:由三个全连接层组成
在这里插入图片描述
上图中就是LeNet的数据流图示,其中汇聚层也就是池化层。
最终输出的大小是10,也就是10个可能结果(0-9)。
每个卷积块的基本单元是一个卷积层、一个sigmoid激活函数和平均池化层(当年没有ReLU和最大池化层)。每个卷积层使用5×5卷积核和一个sigmoid激活函数。
这些层的作用就是将输入映射到多个二维特征输出,通常同时增加通道的数量。(从上图容易看出:第一卷积层有6个输出通道,而第二个卷积层有16个输出通道;每个2×2池操作(步幅也为2)通过空间下采样将维数减少4倍)。卷积的输出形状那是由批量大小、通道数、高度、宽度决定。
为了将卷积块的输出传递给稠密块,我们必须在小批量中展平每个样本(也就是把四维的输入转换为全连接层期望的二维输入,第一维索引小批量中的样本,第二维给出给个样本的平面向量表示)。
LeNet的稠密块有三个全连接层,分别有120、84和10个输出。因为我们在执行分类任务,所以输出层的10维对应于最后输出结果的数量(代表0-9是个结果)。
深度学习框架实现此类模型非常简单,用一个Sequential块把需要的层连接在一个就可以了,我们对原始模型做一个小改动,去掉最后一层的高斯激活:

import torch
from torch import nn
from d2l import torch as d2lnet = nn.Sequential(# 输入图像和输出图像都是28×28,因此我们要先进行填充2格nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(16 * 5 * 5, 120), nn.Sigmoid(),nn.Linear(120, 84), nn.Sigmoid(),nn.Linear(84, 10)
)

上面的模型图示就为:
在这里插入图片描述
我们可以先检查模型,在每一层打印输出的形状:

X = torch.rand(size=(1, 1, 28, 28), dtype=torch.float32)
for layer in net:X = layer(X)print(layer.__class__.__name__, 'output shape:\t', X.shape)

输出结果:

Conv2d output shape: torch.Size([1, 6, 28, 28])
Sigmoid output shape: torch.Size([1, 6, 28, 28])
AvgPool2d output shape: torch.Size([1, 6, 14, 14])
Conv2d output shape: torch.Size([1, 16, 10, 10])
Sigmoid output shape: torch.Size([1, 16, 10, 10])
AvgPool2d output shape: torch.Size([1, 16, 5, 5])
Flatten output shape: torch.Size([1, 400])
Linear output shape: torch.Size([1, 120])
Sigmoid output shape: torch.Size([1, 120])
Linear output shape: torch.Size([1, 84])
Sigmoid output shape: torch.Size([1, 84])
Linear output shape: torch.Size([1, 10])

模型训练

既然已经实现了LeNet,现在可以查看它在Fashion-MNIST数据集上的表现:

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

计算成本较高,因此使用GPU来加快训练。为了进行评估,对之前的evaluate_accuracy进行修改,由于完整的数据集位于内存中,因此在模型使用GPU计算数据集之前,我们需要将其复制到显存中。

def evaluate_accuracy_gpu(net, data_iter, device=None):"""使用GPU计算模型在数据集上的精度"""if isinstance(net, nn.Module):net.eval()  # 设置为评估模式if not device:device = next(iter(net.parameters())).device# 正确预测的数量,总预测的数量metric = d2l.Accumulator(2)with torch.no_grad():for X, y in data_iter:if isinstance(X, list):# BERT微调所需(后面内容)else:X = X.to(device)y = y.to(device)metric.add(d2l.accuracy(net(X), y), y.numel())return metric[0] / metric[1]

要使用GPU,我们要在正向和反向传播之前,将每一小批量数据移动到我们GPU上。
如下所示的train_ch6类似于之前定义的train_ch3。以下训练函数假定从高级API创建的模型作为输入,并进行相应的优化。
使用Xavier来随机初始化模型参数。有关于Xavier的推导和原理可以看下面的文章:
机器学习&&深度学习——数值稳定性和模型化参数(详细数学推导)
与全连接层一样,使用交叉熵损失函数和小批量随机梯度下降,代码如下:

def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):  #@save"""用GPU训练模型"""def init_weights(m):if type(m) == nn.Linear or type(m) == nn.Conv2d:nn.init.xavier_uniform_(m.weight)net.apply(init_weights)print('training on', device)net.to(device)optimizer = torch.optim.SGD(net.parameters(), lr=lr)loss = nn.CrossEntropyLoss()animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['train loss', 'train acc', 'test acc'])timer, num_batches = d2l.Timer(), len(train_iter)for epoch in range(num_epochs):# 训练损失之和,训练准确率之和,样本数metric = d2l.Accumulator(3)net.train()for i, (X, y) in enumerate(train_iter):timer.start()optimizer.zero_grad()X, y = X.to(device), y.to(device)y_hat = net(X)l = loss(y_hat, y)optimizer.step()with torch.no_grad():metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])timer.stop()train_l = metric[0] / metric[2]train_acc =  metric[1] / metric[2]if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:animator.add(epoch + (i+1) / num_batches, (train_l, train_acc, None))test_acc = evaluate_accuracy_gpu(net, test_iter)animator.add(epoch + 1, (None, None, test_acc))print(f'loss {train_l:.3f}, train acc {train_acc:.3f}, 'f'test acc {test_acc:.3f}')print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec 'f'on {str(device)}')

此时我们可以开始训练和评估LeNet模型:

lr, num_epochs = 0.9, 10
train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
d2l.plt.show()

运行输出(这边我没有用远程的GPU,在自己本地跑了,本地只有CPU):

training on cpu
loss 0.477, train acc 0.820, test acc 0.795
8004.2 examples/sec on cpu

运行图片:
在这里插入图片描述

小结

1、卷积神经网络(CNN)是一类使用卷积层的网络
2、在卷积神经网络中,我们组合使用卷积层、非线性激活函数和池化层
3、为了构造高性能的卷积神经网络,我们通常对卷积层进行排列,逐渐降低其表示的空间分辨率,同时增加通道数
4、传统卷积神经网络中,卷积块编码得到的表征在输出之前需要由一个或多个全连接层进行处理

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/52778.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

02 持久层 - 客制化

文章目录 OverView[0] Provision[1] New Package[2] Create Table[3] Insert MockData[4] Check Data OverView 创建 ABAP Package客制化底表向底表写入测试数据查看测试数据 [0] Provision 没有创建 BTP Trail User Account 的需先申请账号,并通过 Eclipse 连接到…

Java 枚举类型enum的常用方法

在Java中,枚举类型(enum)提供了一些常用的方法,用于操作枚举常量。下面是枚举类型常用的方法: values():该方法返回枚举类型的所有枚举常量数组。 enum Weekday {MONDAY, TUESDAY, WEDNESDAY, THURSDAY, …

Linux命令(59)之screen

linux命令之screen 1.screen介绍 linux命令screen是用来进行多窗口管理。 默认screen命令没有安装,安装命令(基于yum源):yum install -y screen 2.screen用法 screen [参数] screen参数 参数说明-r恢复离线的screen作业-ls显示所有的screen作业 3.…

跨境多商户中日韩英多语言商城搭建(PC+小程序+H5),搭建方案

随着全球化的推进,跨境电商正变得越来越普遍。在本文中,我们将介绍跨境电商系统开发中多语言商城独立站的部署搭建方案。 准备工作 在开始部署搭建之前,需要准备以下环境: 服务器,确保服务器具备足够的性能和稳定性。 …

睿讯微带你深度了解汽车交流充电桩

这几年随着新能源汽车的普及,充电桩也越来越多的出现在我们的视野中。新能源纯电汽车就好比一种大号的电子产品,而充电桩则是它不可缺少的子系统,是新能源车主们的必要选择。 汽车充电桩分为直流和交流两种,2022年底全国公共充电桩…

【Apollo学习笔记】—— 相机仿真

文章目录 前言相关代码整理 测试实践文件目录包管理BUILD文件以及cyberfile.xml文件源程序BUILD运行结果其他参考CameraOutput channels启动camera驱动启动camera video compression驱动 前言 本文是对Cyber RT的学习记录,文章可能存在不严谨、不完善、有缺漏的部分&#xff0…

Posix API原理返回值说明

文章目录 1、概述2、connect函数3、listen函数4、accept返回值处理5、recv返回值处理5.1、LT\ET模式读取数据 6、send返回值处理 1、概述 主要介绍网络编程中,使用到的一些系统调用解释,以及返回值的说明 2、connect函数 connect函数功能为,客…

WiFi无线组网温湿度实时监测系统

近年来随着我国电子技术和无线通信技术的快速发展,远距离数据采集传输被应用到众多领域,由于事关环境安全和生命健康,受到了各行各界的关注。在温湿度监测中,目前采用的通信技术主要是4G、WiFi、以太网、LoRa等,今天&a…

C++多线程环境下的单例类对象创建

使用C无锁编程实现多线程下的单例模式 贺志国 2023.8.1 在多线程环境下创建一个类的单例对象,要比单线程环境下要复杂很多。下面介绍在多线程环境下实现单例模式的几种方法。 一、尺寸较小的类单例对象创建 如果待创建的单例类SingletonForMultithread内包含的成…

kernel pwn入门

Linux Kernel 介绍 Linux 内核是 Linux 操作系统的核心组件,它提供了操作系统的基本功能和服务。它是一个开源软件,由 Linus Torvalds 在 1991 年开始开发,并得到了全球广泛的贡献和支持。 Linux 内核的主要功能包括进程管理、内存管理、文…

命令模式 Command Pattern 《游戏设计模式》学习笔记

对于一般的按键输入,我们通常这么做,直接if按了什么键,就执行相应的操作 在这里我们是将用户的输入和程序行为硬编码在一起,这是我们很自然就想到的最快的做法。 但是如果这是一个大型游戏,往往我们需要实现一个按键…

电气防火限流式保护器在汽车充电桩使用上的作用

【摘要】 随着电动汽车行业的不断发展,电动汽车充电设施的使用会变得越来越频繁和广泛。根据中汽协数据显示,2022年上半年,我国新能源汽车产销分别完成266.1万辆和260万辆,同比均增长1.2倍,市场渗透率达21.6%。因此,电动汽车的安全…