Spring Cloud Eureka 和 zookeeper 的区别

CAP理论

在了解eureka和zookeeper区别之前,我们先来了解一下这个知识,cap理论。 1998年的加州大学的计算机科学家 Eric Brewer 提出,分布式有三个指标。Consistency,Availability,Partition tolerance。简称即为CAP。Eric 提出 CAP 不能全部达到,这就是CAP定理。

 

接下来我们分别说下cap。

C

Consistency,一致性的意思。 一致性就是说,我们读写数据必须是一摸一样的。 比如一条数据,分别存在两个服务器中,server1和server2。 我们此时将数据a通过server1修改为数据b。此时如果我们访问server1访问的应该是b。 当我们访问server2的时候,如果返回的还是未修改的a,那么则不符合一致性,如果返回的是b,则符合数据的一致性。

A

Availability,可用性的意思。 这个比较好理解,就是说,只要我对服务器,发送请求,服务器必须对我进行相应,保证服务器一直是可用的。

P

Partition tolerance,分区容错的意思。 一般来说,分布式系统是分布在多个位置的。比如我们的一台服务器在北京,一台在上海。可能由于天气等原因的影响。造成了两条服务器直接不能互相通信,数据不能进行同步。这就是分区容错。我们认为,分区容错是不可避免的。也就是说 P 是必然存在的。

为什么CAP只能达到 CP 或者 AP?

由以上我们得知,P是必然存在的。 如果我们保证了CP,即一致性与分布容错。当我们通过一个服务器修改数据后,该服务器会向另一个服务器发送请求,将数据进行同步,但此时,该数据应处于锁定状态,不可再次修改,这样,如果此时我们想服务器发送请求,则得不到相应,这样就不能A,高可用。 如果我们保证了AP,那么我们不能对服务器进行锁定,任何时候都要得到相应,那么数据的一致性就不好说了。

eureka和zookeeper的cap理论

eureka是基于ap的。zookeeper是基于cp的。

Eureka的实现

eureka的架构实现图如下:

 

eureka的基本原理

上图是来自eureka的官方架构图,这是基于集群配置的eureka;

  • 处于不同节点的eureka通过Replicate进行数据同步
  • Application Service为服务提供者
  • Application Client为服务消费者
  • Make Remote Call完成一次服务调用

服务启动后向Eureka注册,Eureka Server会将注册信息向其他Eureka Server进行同步,当服务消费者要调用服务提供者,则向服务注册中心获取服务提供者地址,然后会将服务提供者地址缓存在本地,下次再调用时,则直接从本地缓存中取,完成一次调用。

当服务注册中心Eureka Server检测到服务提供者因为宕机、网络原因不可用时,则在服务注册中心将服务置为DOWN状态,并把当前服务提供者状态向订阅者发布,订阅过的服务消费者更新本地缓存。

服务提供者在启动后,周期性(默认30秒)向Eureka Server发送心跳,以证明当前服务是可用状态。Eureka Server在一定的时间(默认90秒)未收到客户端的心跳,则认为服务宕机,注销该实例。

eureka的自我保护机制

在默认配置中,Eureka Server在默认90s没有得到客户端的心跳,则注销该实例,但是往往因为微服务跨进程调用,网络通信往往会面临着各种问题,比如微服务状态正常,但是因为网络分区故障时,Eureka Server注销服务实例则会让大部分微服务不可用,这很危险,因为服务明明没有问题。

为了解决这个问题,Eureka 有自我保护机制,通过在Eureka Server配置如下参数,可启动保护机制。

 

ini

复制代码

eureka.server.enable-self-preservation=true

它的原理是,当Eureka Server节点在短时间内丢失过多的客户端时(可能发送了网络故障),那么这个节点将进入自我保护模式,不再注销任何微服务,当网络故障回复后,该节点会自动退出自我保护模式。

eureka保证ap

eureka优先保证可用性。在Eureka平台中,如果某台服务器宕机,Eureka不会有类似于ZooKeeper的选举leader的过程;客户端请求会自动切换 到新的Eureka节点;当宕机的服务器重新恢复后,Eureka会再次将其纳入到服务器集群管理之中;而对于它来说,所有要做的无非是同步一些新的服务 注册信息而已。所以,再也不用担心有“掉队”的服务器恢复以后,会从Eureka服务器集群中剔除出去的风险了。Eureka甚至被设计用来应付范围更广 的网络分割故障,并实现“0”宕机维护需求。当网络分割故障发生时,每个Eureka节点,会持续的对外提供服务(注:ZooKeeper不会):接收新 的服务注册同时将它们提供给下游的服务发现请求。这样一来,就可以实现在同一个子网中(same side of partition),新发布的服务仍然可以被发现与访问。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:

  1. Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
  2. Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
  3. 当网络稳定时,当前实例新的注册信息会被同步到其它节点中 Eureka还有客户端缓存功能(注:Eureka分为客户端程序与服务器端程序两个部分,客户端程序负责向外提供注册与发现服务接口)。 所以即便Eureka集群中所有节点都失效,或者发生网络分割故障导致客户端不能访问任何一台Eureka服务器;Eureka服务的消费者仍然可以通过 Eureka客户端缓存来获取现有的服务注册信息。甚至最极端的环境下,所有正常的Eureka节点都不对请求产生相应,也没有更好的服务器解决方案来解 决这种问题时;得益于Eureka的客户端缓存技术,消费者服务仍然可以通过Eureka客户端查询与获取注册服务信息。

zookeeper保证cp

作为一个分布式协同服务,ZooKeeper非常好,但是对于Service发现服务来说就不合适了;因为对于Service发现服务来说就算是 返回了包含不实的信息的结果也比什么都不返回要好;再者,对于Service发现服务而言,宁可返回某服务5分钟之前在哪几个服务器上可用的信息,也不能 因为暂时的网络故障而找不到可用的服务器,而不返回任何结果。所以说,用ZooKeeper来做Service发现服务是肯定错误的。 当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。

eureka和zookeeper的区别总结

Eureka可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像zookeeper那样使整个注册服务瘫痪。Eureka作为单纯的服务注册中心来说要比zookeeper更加“专业”,因为注册服务更重要的是可用性,我们可以接受短期内达不到一致性的状况。


链接:https://juejin.cn/post/6844904185381519374
 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/53289.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Istio 安全 mTLS认证 PeerAuthentication

这里定义了访问www.ck8s.com可以使用http也可以使用https访问,两种方式都可以访问。 那么是否可以强制使用mtls方式去访问? mTLS认证 PeerAuthentication PeerAuthentication的主要作用是别人在和网格里的pod进行通信的时候,是否要求mTLS mTL…

完全背包问题

题目链接 题意&#xff1a;在01背包的基础上多了每个物品都可以无限取的条件 思路&#xff1a;首先考虑在01背包的基础上的暴力枚举&#xff0c;我们可以在枚举前i件物品最多拿j的容量时再遍历当前物品拿的数量 贴一个暴力tle代码&#xff1a; #include<bits/stdc.h> #d…

分布式电网动态电压恢复器模拟装置电子设计大赛

wx供重浩&#xff1a;创享日记 对话框发送&#xff1a;85电网 获取完整论文报告结构框图工程源文件 摘要&#xff1a;本装置采用DC-AC及AC-DC-AC双重结构&#xff0c;前级采用功率因数校正&#xff08;PFC&#xff09;电路完成AC-DC变换&#xff0c;改善输入端电网电能质量。后…

靶形数独

题目描述 小城和小华都是热爱数学的好学生&#xff0c;最近&#xff0c;他们不约而同地迷上了数独游戏&#xff0c;好胜的他们想用数独来一比高低。但普通的数独对他们来说都过于简单了&#xff0c;于是他们向 Z 博士请教&#xff0c;Z 博士拿出了他最近发明的“靶形数独”&am…

YOLOv5入门

模型检测 关键参数 weights:训练好的模型文件 source: 检测的目标&#xff0c;可以是单张图片、文件夹、屏幕或者摄像头等 conf-thres: 置信度闯值&#xff0c;越低框越多&#xff0c;越高框越少 iou-thres: IOU闻值&#xff0c;越低框越少&#xff0c;越少框越多 torch.hu…

opencv-32 图像平滑处理-高斯滤波cv2.GaussianBlur()

在进行均值滤波和方框滤波时&#xff0c;其邻域内每个像素的权重是相等的。在高斯滤波中&#xff0c;会将中心点的权重值加大&#xff0c;远离中心点的权重值减小&#xff0c;在此基础上计算邻域内各个像素值不同权重 的和。 基本原理 在高斯滤波中&#xff0c;卷积核中的值不…

阶段总结(linux基础)

目录 一、初始linux系统 二、基本操作命令 三、目录结构 四、文件及目录管理命令 查看文件内容 创建文件 五、用户与组管理 六、文件权限与压缩管理 七、磁盘管理 八、系统程序与进程管理 管理机制 文件系统损坏 grub引导故障 磁盘资源耗尽 程序与进程的区别 查…

layui之layer弹出层的icon数字及效果展示

layer的icon样式 icon如果在信息提示弹出层值(type为0)可以传入0-6&#xff0c;icon与图标对应关系如下&#xff1a; 如果是加载层&#xff08;type为3&#xff09;可以传入0-2&#xff0c;icon与图标对应关系如下&#xff1a;

【Java】批量生成条码

批量生成PDF条码 效果图&#xff1a; //调用下方接口注意编码格式if(CollectionUtil.isNotEmpty(productExList)){String exportFileName URLEncoder.encode("商品条码", "UTF-8") DateUtil.format(new Date(), "yyyyMMddHHmmss");response.…

“科创中国”青百会轮值主席吴甜:以大语言模型为代表的AI将引发产业变革

8月1日&#xff0c;“科创中国”青年百人会&#xff08;后文简称青百会&#xff09;联合百度举办“青创汇”高端对话&#xff0c;围绕人工智能技术创新与产业发展交流研讨&#xff0c;同时正式成立“科创中国”青年百人会女性工作委员会。该委员会将鼓励更多女性投身科技创新事…

AP2400 LED汽车摩灯照明电源驱动 过EMC DC-DC降压恒流IC

产品特点 宽输入电压范围&#xff1a;5V&#xff5e;100V 可设定电流范围&#xff1a;10mA&#xff5e;6000mA 固定工作频率&#xff1a;150KHZ 内置抖频电路&#xff0c;降低对其他设备的 EMI干扰 平均电流模式采样&#xff0c;恒流精度更高 0-100%占空比控制&#xff0…

快速制作美容行业预约小程序

随着科技的不断进步&#xff0c;移动互联网的快速发展&#xff0c;小程序成为了很多行业迅速发展的利器。对于美容行业来说&#xff0c;一款美容预约小程序不仅可以方便用户进行预约&#xff0c;还可以提升美容店铺的服务质量和管理效率。下面&#xff0c;我们来介绍一下如何快…