面试题:限流的算法有哪些?

经典的限流算法有4种:

  • 固定窗口
  • 滑动窗口
  • 漏桶
  • 令牌桶

1. 固定窗口限流算法

是一种最简单的限流算法,其原理是在固定时间窗口(单位时间)内限制请求的数量。该算法将时间分成固定的窗口,并在每个窗口内限制请求的数量。具体来说,算法将请求按照时间顺序放入时间窗口中,并计算该时间窗口内的请求数量,如果请求数量超出了限制,则拒绝该请求。

在这里插入图片描述

  • 优点:思路简单,便于实现和理解
  • 缺点:
    存在明显的临界问题(双杀),比如: 假设限流阀值为 5 个请求,单位时间窗口是 1s ,如果我们在单位时间内的前 0.8-1s1-1.2s,分别并发5个请求。虽然都没有超过阀值,但是如果算 0.8-1.1s,则并发数高达 10,已经超过单位时间1s不超过5阀值的定义啦。
    在这里插入图片描述
   public static Integer counter = 0;  //统计请求数public static long lastAcquireTime =  0L;public static final Long windowUnit = 1000L ; //假设固定时间窗口是1000mspublic static final Integer threshold = 10; // 窗口阀值是10/*** 固定窗口时间算法* 关注公众号:捡田螺的小男孩* @return*/public synchronized boolean fixedWindowsTryAcquire() {long currentTime = System.currentTimeMillis();  //获取系统当前时间if (currentTime - lastAcquireTime > windowUnit) {  //检查是否在时间窗口内counter = 0;  // 计数器清0lastAcquireTime = currentTime;  //开启新的时间窗口}if (counter < threshold) {  // 小于阀值counter++;  //计数统计器加1return true;}return false;}

2. 滑动窗口限流算法

滑动窗口限流算法是一种常用的限流算法,用于控制系统对外提供服务的速率,防止系统被过多的请求压垮。它将单位时间周期分为n个小周期,分别记录每个小周期内接口的访问次数,并且根据时间滑动删除过期的小周期。它可以解决固定窗口临界值的问题。

在这里插入图片描述
假设单位时间还是 1s,滑动窗口算法把它划分为5个小周期,也就是滑动窗口(单位时间)被划分为5个小格子。每格表示0.2s。每过0.2s,时间窗口就会往右滑动一格。然后呢,每个小周期,都有自己独立的计数器,如果请求是0.83s到达的,0.8~1.0s对应的计数器就会加1

当滑动窗口的格子周期划分的越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。

  • 优点
    • 精度高(通过调节时间窗口的大小来实现不同的限流效果)
    • 可扩展性强(容易实现与其他限流算法的结合使用)
  • 缺点
    • 突发流量无法处理(无法应对短时间内的大量请求,但是一旦到达限流后,请求都会直接暴力被拒绝。这样子我们会损失一部分请求,这其实对于产品来说,并不太友好),需要合理调整时间窗口大小。
 /*** 单位时间划分的小周期(单位时间是1分钟,10s一个小格子窗口,一共6个格子)*/private int SUB_CYCLE = 10;/*** 每分钟限流请求数*/private int thresholdPerMin = 100;/*** 计数器, k-为当前窗口的开始时间值秒,value为当前窗口的计数*/private final TreeMap<Long, Integer> counters = new TreeMap<>();/*** 滑动窗口时间算法实现*/public synchronized boolean slidingWindowsTryAcquire() {long currentWindowTime = LocalDateTime.now().toEpochSecond(ZoneOffset.UTC) / SUB_CYCLE * SUB_CYCLE; //获取当前时间在哪个小周期窗口int currentWindowNum = countCurrentWindow(currentWindowTime); //当前窗口总请求数//超过阀值限流if (currentWindowNum >= thresholdPerMin) {return false;}//计数器+1counters.get(currentWindowTime)++;return true;}/*** 统计当前窗口的请求数*/private int countCurrentWindow(long currentWindowTime) {//计算窗口开始位置long startTime = currentWindowTime - SUB_CYCLE* (60s/SUB_CYCLE-1);int count = 0;//遍历存储的计数器Iterator<Map.Entry<Long, Integer>> iterator = counters.entrySet().iterator();while (iterator.hasNext()) {Map.Entry<Long, Integer> entry = iterator.next();// 删除无效过期的子窗口计数器if (entry.getKey() < startTime) {iterator.remove();} else {//累加当前窗口的所有计数器之和count =count + entry.getValue();}}return count;}

3. 漏桶限流算法

漏桶限流算法(Leaky Bucket Algorithm)是一种流量控制算法,用于控制流入网络的数据速率,以防止网络拥塞。它的思想是将数据包看作是水滴,漏桶看作是一个固定容量的水桶,数据包像水滴一样从桶的顶部流入桶中,并通过桶底的一个小孔以一定的速度流出,从而限制了数据包的流量。

  • 工作原理
    对于每个到来的数据包,都将其加入到漏桶中,并检查漏桶中当前的水量是否超过了漏桶的容量。如果超过了容量,就将多余的数据包丢弃。如果漏桶中还有水,就以一定的速率从桶底输出数据包,保证输出的速率不超过预设的速率,从而达到限流的目的。
    在这里插入图片描述
    • 流入的水滴:收到的访问请求
    • 桶的容量:系统所能处理的请求数
    • 了:达到限流的阈值,水滴溢出(拒绝请求)
    • 漏桶底恒定速率流出水滴:服务按照指定的速率来处理请求
  • 优点
    • 可以平滑限制请求的处理速度,避免瞬间请求过多导致系统崩溃或者雪崩
    • 可以控制请求的处理速度,使得系统可以适应不同的流量需求,避免过载或者过度闲置
    • 可以通过调整桶的大小和漏出速率来满足不同的限流需求,可以灵活地适应不同的场景。
  • 缺点
    • 需要对请求进行缓存,会增加服务器的内存消耗。
    • 对于流量波动比较大的场景,需要较为灵活的参数配置才能达到较好的效果。
    • 面对突发流量的时候,漏桶算法还是循规蹈矩地处理请求,并不能解决处理请求速度慢的问题
/*** LeakyBucket 类表示一个漏桶,* 包含了桶的容量和漏桶出水速率等参数,* 以及当前桶中的水量和上次漏水时间戳等状态。*/
public class LeakyBucket {private final long capacity;    // 桶的容量private final long rate;        // 漏桶出水速率private long water;             // 当前桶中的水量private long lastLeakTimestamp; // 上次漏水时间戳public LeakyBucket(long capacity, long rate) {this.capacity = capacity;this.rate = rate;this.water = 0;this.lastLeakTimestamp = System.currentTimeMillis();}/*** tryConsume() 方法用于尝试向桶中放入一定量的水,如果桶中还有足够的空间,则返回 true,否则返回 false。* @param waterRequested* @return*/public synchronized boolean tryConsume(long waterRequested) {leak();if (water + waterRequested <= capacity) {water += waterRequested;return true;} else {return false;}}/*** 。leak() 方法用于漏水,根据当前时间和上次漏水时间戳计算出应该漏出的水量,然后更新桶中的水量和漏水时间戳等状态。*/private void leak() {long now = System.currentTimeMillis();long elapsedTime = now - lastLeakTimestamp;long leakedWater = elapsedTime * rate / 1000;if (leakedWater > 0) {water = Math.max(0, water - leakedWater);lastLeakTimestamp = now;}}
}

4. 令牌桶算法

令牌桶算法是一种常用的限流算法,可以用于限制单位时间内请求的数量。该算法维护一个固定容量的令牌桶,每秒钟会向令牌桶中放入一定数量的令牌。当有请求到来时,如果令牌桶中有足够的令牌,则请求被允许通过并从令牌桶中消耗一个令牌,否则请求被拒绝。
在这里插入图片描述

  • 优点
    • 稳定性高:可以控制请求的处理速度,使系统的负载变稳定
    • 精度高: 可以根据实际情况动态调整生成令牌的速率,可以实现高精度的限流
    • 弹性好:可以处理突发的流量,在短时间内提供更多的处理能力,以应对突发流量
  • 缺点
    • 实现复杂
      相对于固定窗口算法等其他限流算法,令牌桶算法的实现较为复杂。对短时间请求难以处理:在短时间内有大量请求到来时,可能会导致令牌桶中的令牌被快速消耗完,从而限流。这种情况下,可以考虑使用漏桶算法。
    • 时间精度要求高:
      令牌桶算法需要在固定的时间间隔内生成令牌,因此要求时间精度较高,如果系统时间不准确,可能会导致限流效果不理想。、
/*** TokenBucket 类表示一个令牌桶*/
public class TokenBucket {private final int capacity;     // 令牌桶容量private final int rate;         // 令牌生成速率,单位:令牌/秒private int tokens;             // 当前令牌数量private long lastRefillTimestamp;  // 上次令牌生成时间戳/*** 构造函数中传入令牌桶的容量和令牌生成速率。* @param capacity* @param rate*/public TokenBucket(int capacity, int rate) {this.capacity = capacity;this.rate = rate;this.tokens = capacity;this.lastRefillTimestamp = System.currentTimeMillis();}/*** allowRequest() 方法表示一个请求是否允许通过,该方法使用 synchronized 关键字进行同步,以保证线程安全。* @return*/public synchronized boolean allowRequest() {refill();if (tokens > 0) {tokens--;return true;} else {return false;}}/*** refill() 方法用于生成令牌,其中计算令牌数量的逻辑是按照令牌生成速率每秒钟生成一定数量的令牌,* tokens 变量表示当前令牌数量,* lastRefillTimestamp 变量表示上次令牌生成的时间戳。*/private void refill() {long now = System.currentTimeMillis();if (now > lastRefillTimestamp) {int generatedTokens = (int) ((now - lastRefillTimestamp) / 1000 * rate);tokens = Math.min(tokens + generatedTokens, capacity);lastRefillTimestamp = now;}}
}

👨‍🏫 参考捡田螺的小男孩

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536048.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Windows10/11 D盘 安装 WSL2

一、简介二、正常安装一、 设置 windows 功能 三、迁移系统 一、简介 WSL2适用场景&#xff1a; 嵌入式系统等需要gnu交叉编译工具链 linux服务器端开发 跨平台应用开发 需要linux环境的其他开发 在Window10/Windows11上安装WSL2&#xff0c;即可替代虚拟机&#xff0c;远程登…

在线安装QT Creator 版本(自带编译套件)

在线版下载Qt6最新版本 第一步&#xff1a;进入archive目录 第二步&#xff1a;进入online_installers目录 第三步&#xff1a;进入目前在线安装包最新版本4.7 第四步&#xff1a;选择下载windows版本的在线安装包 如果出现以下错误&#xff0c;访问不了&#xff0c;则启动…

HTML5+CSS3+移动web——CSS 文字控制属性

系列文章目录 HTML5CSS3移动web——HTML 基础-CSDN博客https://blog.csdn.net/ymxk2876721452/article/details/136070953?spm1001.2014.3001.5502HTML5CSS3移动web——列表、表格、表单-CSDN博客https://blog.csdn.net/ymxk2876721452/article/details/136221443?spm1001.2…

全球首个AI程序员Devin诞生,真的不再需要程序员了吗?

前言 今年到底是怎么回事&#xff1f;前有Sora(首个文生视频大模型)独领风骚&#xff0c;后有Mistral&#xff08;号称世界第二语言大模型&#xff09;横刀立马&#xff0c;甚至Claude3的热度都还没有过&#xff0c;今天一则更炸裂的消息就爆出&#xff0c;世界上第一个AI程序…

反无人机电子护栏:原理、算法及简单实现

随着无人机技术的快速发展&#xff0c;其在航拍、农业、物流等领域的应用日益广泛。然而&#xff0c;无人机的不规范使用也带来了安全隐患&#xff0c;如侵犯隐私、干扰航空秩序等。为了有效管理无人机&#xff0c;反无人机电子护栏技术应运而生。 目录 一、反无人机电子护栏…

Docker安装Prometheus监控

环境初始化 关闭防火墙 setenforce 0 vim /etc/selinux/config ##################内部代码################### SELINUXdisabled #关闭防火墙 ############################################ 安装docker #卸载yum源之前的docker安装包 sudo yum remove docker docker-clie…

前端请求到 SpringMVC 的处理流程

1. 发起请求 客户端通过 HTTP 协议向服务器发起请求。 2. 前端控制器&#xff08;DispatcherServlet&#xff09; 这个请求会先到前端控制器 DispatcherServlet&#xff0c;它是整个流程的入口点&#xff0c;负责接收请求并将其分发给相应的处理器。 3. 处理器映射&#xf…

深入理解Vue3中利用mitt:实现轻量级事件监听与触发

在 Vue3 中&#xff0c;父组件和子组件之间可以通过一些方式进行通信。其中&#xff0c;父组件向子组件通信主要有两种方式&#xff1a;传值和调用子组件的方法。 一、父组件向子组件传值 当父组件需要向子组件传递数据时&#xff0c;可以通过属性绑定的方式来实现。父组件可…

【平芯微PW2153A】100V宽压降芯片,100W输出,短路保护,性能卓越

在电子设备日新月异的今天&#xff0c;电源管理芯片作为电子设备的“心脏”&#xff0c;其性能的稳定性和高效性对于设备的整体运行至关重要。PW2153A作为一款宽电压范围降压型DC-DC电源管理芯片&#xff0c;凭借其出色的性能和丰富的功能&#xff0c;在电源管理领域大放异彩。…

集智书童 | 炸裂 !轻量化YOLO | ShuffleNetv2与Transformer结合,重塑YOLOv7成就超轻超快YOLO

本文来源公众号“集智书童”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;炸裂 &#xff01;轻量化YOLO | ShuffleNetv2与Transformer结合&#xff0c;重塑YOLOv7成就超轻超快YOLO 随着移动计算技术的迅速发展&#xff0c;在移动…

Vulnhub靶机:Kioptrix_Level1.1

一、介绍 运行环境&#xff1a;Virtualbox 攻击机&#xff1a;kali&#xff08;192.168.56.101&#xff09; 靶机&#xff1a;Kioptrix_Level1.1&#xff08;192.168.56.104&#xff09; 目标&#xff1a;获取靶机root权限和flag 靶机下载地址&#xff1a;https://www.vul…

Linux 动态库和静态库 【详解】

动静态库的基本原理 静态库&#xff08;.a&#xff09;&#xff1a;程序在编译链接的时候把库的代码链接到可执行文件中。程序运行的时候将不再需要静态库动态库&#xff08;.so&#xff09;&#xff1a;程序在运行的时候才去链接动态库的代码&#xff0c;多个程序共享使用库的…