基于Yolov2深度学习网络的车辆检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1. 卷积神经网络(CNN)

4.2. YOLOv2 网络

4.3. 实现过程

4.4. 应用领域

5.算法完整程序工程


1.算法运行效果图预览

 

 

2.算法运行软件版本

MATLAB2022A

3.部分核心程序

............................................................................
options = trainingOptions('sgdm', ...'MiniBatchSize', 8, ....'InitialLearnRate',1e-3, ...'MaxEpochs',100,...'CheckpointPath', checkpoint_folder, ...'Shuffle','every-epoch', ...'ExecutionEnvironment', 'gpu');% 设置训练选项
% 训练 YOLOv2 目标检测器
[detector,info] = trainYOLOv2ObjectDetector(train_data,lgraph,options);
for i = 1:num_test_imagesI = imread(test_data.imageFilename{i});% 读取测试图像[bboxes,scores,labels] = detect(detector,I);% 在测试图像上进行目标检测results.Boxes{i} = bboxes;results.Scores{i} = scores;results.Labels{i} = labels;
end
% 期望的测试集标注信息
expected_results = test_data(:, 2:end);
% 计算平均准确率和召回率
[ap, recall, precision] = evaluateDetectionPrecision(results, expected_results);plot(recall,precision)
xlabel('召回率')
ylabel('准确率')
grid on
title(sprintf('平均准确率 = %.2f', ap))
% 保存训练好的目标检测器
save yolov2.mat detector

4.算法理论概述

         车辆检测是计算机视觉领域中的一个重要问题。它在自动驾驶、智能交通系统、交通监控以及车辆计数等应用场景中起着至关重要的作用。近年来,深度学习在图像识别领域取得了显著的成果,其中基于卷积神经网络(CNN)的车辆检测方法成为了研究的热点。


4.1. 卷积神经网络(CNN)


        卷积神经网络是一类深度学习模型,特别适用于处理图像数据。它通过多层卷积层、池化层和全连接层来逐步提取图像特征,并进行分类或回归任务。在车辆检测中,我们使用一个经过预训练的卷积神经网络来提取图像特征,然后在其基础上构建车辆检测模型。

4.2. YOLOv2 网络


        YOLOv2是YOLO(You Only Look Once)目标检测算法的改进版本。它采用了一系列的技术手段来提高检测精度和速度。YOLOv2的核心思想是将目标检测任务看作是一个回归问题,同时在多个尺度上进行检测。YOLOv2网络结构由卷积层、池化层、全连接层以及特殊的检测层(Detection Layer)组成。其中,检测层负责生成边界框和类别概率。

4.3. 实现过程


        车辆检测需要大量的带有车辆标注的图像数据集。通常,我们会采用一些公开的数据集,如KITTI、Cityscapes等。这些数据集包含了大量的道路场景图像,并对图像中的车辆位置进行了标注。

         在车辆检测中,我们可以使用经过预训练的卷积神经网络作为特征提取器。常用的预训练网络包括VGG、ResNet、MobileNet等。我们可以选择合适的预训练网络,并在其基础上进行微调。
         由于车辆检测是一个复杂的任务,为了提高模型的泛化能力,我们需要进行数据增强。数据增强可以通过随机裁剪、随机旋转、随机缩放等操作来扩充训练集。
         在选择好特征提取器后,我们需要在其基础上构建车辆检测模型。YOLOv2采用了多尺度检测策略,即在不同层级的特征图上进行检测。我们需要根据检测目标的大小选择不同的特征图来进行检测。
         完成模型构建后,我们需要使用标注的图像数据进行训练。在训练过程中,我们通过最小化损失函数来优化模型参数,使得模型能够准确地检测车辆。常用的损失函数包括边界框回归损失和分类损失。

4.4. 应用领域


         基于YOLOv2深度学习网络的车辆检测在许多应用领域中具有广泛的应用。在自动驾驶中,车辆检测是一个关键的技术。基于YOLOv2深度学习网络的车辆检测可以帮助自动驾驶车辆实时感知周围的车辆,并做出相应的决策。在智能交通系统中,车辆检测可以用于实时监控道路交通状况,提供实时的交通流量信息,并辅助交通信号控制。基于YOLOv2深度学习网络的车辆检测可以用于交通违法检测,如红灯闯禁、不按规定车道行驶等。在停车场管理、交通流量统计等场景中,车辆计数是一个重要的任务。基于YOLOv2深度学习网络的车辆检测可以用于实时计数车辆。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/53689.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

图论-简明导读

计算机图论是计算机科学中的一个重要分支,它主要研究图的性质和结构,以及如何在计算机上有效地存储、处理和操作这些图。本文将总结计算机图论的核心知识点。 一、基本概念 计算机图论中的基本概念包括图、节点、边等。图是由节点和边构成的数据结构&am…

新版chrome浏览器恢复下载的时候恢复底栏提示

近日,谷歌对其Chrome浏览器进行了更新,为所有桌面系统的Chrome浏览器增加了位于地址栏右侧的“下载”气泡,并同时取消了原有的底部下载栏。 谷歌表示,这次更新的目的是为了让用户更方便地与最近下载的文件进行交互。 然而&#x…

Kubernetes v1.20 二进制部署

架构 k8s集群master01:192.168.80.101 kube-apiserver kube-controller-manager kube-scheduler etcd k8s集群master02:192.168.80.102 k8s集群node01:192.168.80.103 kubelet kube-proxy docker k8s集群node02:192.168.80…

windows永久暂停更新

目录 1.winr,输入regedit打开注册表 2.打开注册表的这个路径: 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsUpdate\UX\Settings 右键空白地方新建QWORD值命名为:FlightSettingsMaxPauseDays 3.双击FlightSettingsMaxPauseDays,修改里面的值为100000,右边基数设置…

Python求均值、方差、标准偏差SD、相对标准偏差RSD

均值 均值是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。用于反映现象总体的一般水平,或分布的集中趋势。 import numpy as npa [2, 4, 6, 8]print(np.mean(a)) # 均值 print(np.average(a, weights[1, 2, 1, 1])) # 带…

小白也能懂!业务中台与数据中台究竟是什么?

大家好,今天我们要讨论的是业务中台与数据中台,或许你对这些名词还不太熟悉,但别担心,接下来我将为你详细解释这两个概念,并且用通俗易懂的语言来解释它们。 业务中台是什么? 首先,让我们来了解…

打开的idea项目maven不生效

方法一:CtrlshiftA(或者help---->find action), 输入maven, 点击add maven projects,选择本项目中的pom.xml配置文件,等待加载........ 方法二:view->tools windows->mave…

第5章 通过微信网页授权间接获取微信中的code值

1 准备基于外网的有效回调页面 由于当前最新版的微信不再显示带有code值的错误页面,所以开发者必须先自己构建1个用于获取code值外网的有效回调页面,微信浏览器才能通过该有效回调页面获取code值。 上面的页面在最新版的微信不再显示。 1.1 构建基于外网…

Nginx使用proxy_cache指令设置反向代理缓存静态资源

场景 CentOS7中解压tar包的方式安装Nginx: CentOS7中解压tar包的方式安装Nginx_centos7 tar文件 怎么load_霸道流氓气质的博客-CSDN博客 参考上面流程实现搭建Nginx的基础上,实现静态资源的缓存设置。 注意上面安装时的目录是在/opt/nginx目录下&…

lifecycleScope Unresolved reference

描述 导入了lifecycle.lifecycleScope,但是在activity中使用lifecycleScope报错出现Unresolved reference找不到引用。 导包 import androidx.lifecycle.lifecycleScope使用 lifecycleScope.launch(Dispatchers.IO) {...}错误 方案 代码中的activity继承Activ…

Cesium引入vite + vue3

下载Cesium yarn add cesium下载cesium-vite 插件 yarn add vite-plugin-cesium使用 vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import WindiCSS from vite-plugin-windicss import cesium from vite-plugin-cesium; //引入插件…

【绪论0】

#pic_center R 1 R_1 R1​ R 2 R^2 R2 目录 知识框架No.0 引言No.1 操作系统的概念功能和定义一、操作系统的概念和定义1、电脑的演变 二、操作系统的功能和目标 No.2 操作系统的特征一、并发二、共享三、虚拟四、异步 No.3 操作系统的发展与分类一、手工操作阶段二、批处理阶段…