[综述笔记]Graph Neural Networks in Network Neuroscience

论文网址:Graph Neural Networks in Network Neuroscience | IEEE Journals & Magazine | IEEE Xplore

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 省流版

1.1. 心得

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. What Do Graph Neural Networks Offer to Network Neuroscience?

2.3.1. GNN Overview

2.3.2. Brain Graph Overview

2.3.3.Literature Search and Taxonomy Definition

2.3.4. Brain Graph Prediction

2.3.5. Brain Graph Integration

2.3.6. Brain Graph Classification

2.4. Discussion and Outlook

2.4.1. Toward Clinical Translation

2.4.2. Outlook

3. 知识补充

3.1. Structural and anatomical images

3.2. Brain images

3.3. Dichotomized learning-based models

3.4. Isomeric and heterogeneous

3.5. Mesh and grid

4. Reference List


1. 省流版

1.1. 心得

(1)一看时间2022,哥们儿你真是错过了2022的GNN盛世

(2)妈妈,感觉看综述被生僻英文单词输出了

(3)这Intro是真长啊一口气读下去差点没噎死我

(4)第二次challenge2.3.2. 脑图一般是无向图,能不能发展一点有向啊,虽然是作为外行人的发言

(5)挑战与见解写得有点紧密联系了最好还是分开吧而且那个见解有点vague

1.2. 论文总结图

2. 论文逐段精读

2.1. Abstract

        ①Medical neuroimaging now can present the morphology, structure, and function of brain

        ②Their citations list: GitHub - basiralab/GNNs-in-Network-Neuroscience: A review of papers proposing novel GNN methods with application to brain connectivity published in 2017-2020.

morphological  n.同 morphologic  adj.形态学(上)的;【语】词法的

2.2. Introduction

        ①The three representations of brains bring time, resolution and domain information of brain:

        ②Multi-modality data will bring different information of brain. Human Connectome Project (HCP), the Baby Connectome Project (BCP) and the Connectome Related to Human Disease (CRHD) datasets focus to collect such data.

        ③Functional connectivity (FC) matrix can be generated by CONN toolbox or groupwise whole-brain parcellation methods and structural and morphological connectivity (SC/MC) matrices can be measured by FSL toolbox and Desikan-Killiany atlas via FreeSurfer software(应该只列了一部分啦)

        ④There are methods that can predict images with other modalities by a single imaging modality

        ⑤Moreover, mapping brain graph from non Euclidean domains to other domains such as geometric and hyperbolic domains

        ⑥Citing other surveys and list the differences

underpinning  v.基础;加强;巩固;构成(…的基础等)  underpin的现在分词  n.(学说、理论等的)基础;基础结构;基础材料;(人的)腿

endogenous  adj.内源性的;内生的

holistic  adj.整体的;全面的;功能整体性的

coalescent  adj.合并的;接合的  n.联合;合并

internodal  adj.节间的

nascent  adj.新生的;萌芽的;未成熟的

taxonomy  n.分类法;分类学;分类系统

2.3. What Do Graph Neural Networks Offer to Network Neuroscience?

2.3.1. GNN Overview

        ①GNNs can be categorized into three main types: Graph Convolutional Network (GCN), Graph Attention Network (GAT) and message-passing mechanism(为什么消息传递机制不被包含在GCN里啊?

        ②GNN usually defines graph as G=(N,E,\mathbf{A},\mathbf{F}), where \mathbf{A}\in \mathbb{R}^{n\times n} denotes the pairwise correlation, \mathbf{F}\in \mathbb{R}^{\boldsymbol{n}\times f} denotes feature matrix, N denotes the nodes set and E denotes the edges set.

        ③If there is no feature of node, setting \mathbf{F}=E

        ④The aggregation method of GCN:

\mathbf{Z}=f_\phi(\mathbf{F},\mathbf{A}|\boldsymbol{\Theta})=\phi(\widetilde{\mathbf{D}}^{-\frac12}\widetilde{\mathbf{A}}\widetilde{\mathbf{D}}^{-\frac12}\mathbf{F}\boldsymbol{\Theta})

where \phi denotes the activate function, \boldsymbol{\Theta} denotes the filter that presents the graph convolutional weights, f\left ( \cdot \right ) dentoes the GCN function, \widetilde{\mathbf{A}}=\mathbf{A}+\mathbf{I} and \widetilde{\mathbf{D}}_{ii}=\sum_{j}\widetilde{\mathbf{A}}_{ij}

        ⑤Graph-based model and population based model:

2.3.2. Brain Graph Overview

        ①Basically, regarding neurons as nodes and corresponding synapses as edges is a method of constructing brain graph. However, it is relevant expensive in computing(嘻嘻,文心了一下大脑中大概有120亿到140亿个神经元,往死里算!所以后来的ROI划分(一组神经元!)也算是迈出了很大一步呢!)

        ②Traditionally, brain graphs are undirected graphs.

        ③Common method of brain graph construction:

(1)Morphological brain graphs

        ①Method: cortical measures of detecting the sulcal depth and cortical thickness

        ②Extraction: from T1-weighted images

        ③Main preprocessing: "skull stripping, motion correction, T1-w intensity normalization, topology correction, segmentation of the sub-cortical white matter and deep grey matter volumetric structures and cortical hemisphere construction"

        ④Dividing regions by specific atlas, such as Desikan-Killiany Atlas. The weighted edges of ROIs are absolute difference

(2)Functional brain graphs

        ①Method: constructed by fMRI, namely blood-oxygen-level-dependent (BOLD) signal

        ②Edges: correlations between ROI

        ③Node: with no feature

(3)Structural brain graphs

        ①Method: constructed by diffusion tensor imaging (DTI) or diffusion spectrum imaging (DSI), which measured by diffusion of water molecules. It can distinguish gray matter and white matter 

        ②Edges: absolute difference of number of fibers in different ROIs

2.3.3.Literature Search and Taxonomy Definition

        ①Data focused: 2017.1.1 - 2020.12.31

        ②Databases: IEEExplore, PubMed, Research Gate, Arxiv Sanity and Google Scholar using

        ③Keywords:  “brain graph”, “brain network”, “connectome”, “GNN”, “graph representation learning”, “network neuroscience”, “graph neural networks”

        ④Journals/Conferences: Medical Image Computing and Computer Assisted Intervention conference (MICCAI), the Information Processing in Medical Imaging (IPMI) conference, Journal of Neuroscience Methods, IEEE Transactions on Medical Imaging journal, Frontiers in Neuroscience, Neuroimage, Cerebral Cortex journals and bioRxiv

        ⑤Ignore: CNN/ML in brain

        ⑥Three domains in brain graph: prediction, integration and classification

        ⑦Specific types in brain domain:

primer  n.底漆;初级读本;底层涂料;入门书;启蒙读本;识字课本

2.3.4. Brain Graph Prediction

        ①⭐Patients may lack multi-times scans over time or multi-modality scan images

        ②The data of brain image is too little

        ③Brain Graph Prediction Publications

        ④Brain Graph Integration Publications

        ⑤Disease Classification Publications

        ⑥Biomarker Identification Publications

        ⑦Summary of lost functions:

(1)Cross-Domain Graph Prediction

        ①Problem statement: for original graph G_{S}, learning a manpping function f:(\mathbf{A}_S,\mathbf{F}_S)\mapsto(\mathbf{A}_T,\mathbf{F}_T). After that, G_{S}\rightarrow G_{T}

        ②Categories: single/multi graph prediction

        ③Single graph prediction: such as GAN based models, they predict brain graph with another modality from one source modality. It requires different training when predict different modalities of brain graph

        ④Multi graph prediction: such as GCN based autoencoder methods

        ⑤Challenges: a) not all of them are end-to-end, which may accumulates errors, b) GAN based models are possible face mode collapse, c) few topological structured considered

(2)Cross-Resolution Graph Prediction

        ①Problem statement: for low-resolution brain graph G_l=(N_l,E_l,\mathbf{A}_l,\mathbf{F}_l), learning a mapping function f:(\mathbf{A}_l,\mathbf{F}_l)\mapsto(\mathbf{A}_s,\mathbf{F}_s) to map G_l=(N_l,E_l,\mathbf{A}_l,\mathbf{F}_l)\rightarrow G_s=(N_s,E_s,\mathbf{A}_s,\mathbf{F}_s),where\, N_{l}<N_{s} 

        ②Example: U-autoencoder constructed by GCN layers, which inspired by U-Net 

        ③Future challenges: better GNN framework, computing efficiency, higher accuracy. What is more, people can fucos on multi-resolution graph synthesis in the future

(3)Cross-Time Graph Prediction

        ①Problem statement: to learn a mapping function f_t:(\mathbf{A}_{t_i},\mathbf{F}_{t_i})\mapsto(\mathcal{T}) , which turns G_{t_i}=(N,E,\mathbf{A}_{t_i},\mathbf{F}_{t_i}),i\in\{1,\ldots,n_t\} to a evolution trajectory \mathcal{T}=\{G_{t_{i+1}}\}_{i=2}^{n_t}

        ②Categories: dichotomized learning-based/end-to-end learning based GNN model

        ③Briefly introducing GCN-based graph autoencoder (dichotomized) and GAN-based graph autoencoder with edge-conditioned convolution (ECC) (end-to-end)(不是我的领域捏,介绍了这俩东西的进化预测实现方法)

        ④Challenges: a) dichotomized learning strategy might limit joint prediction(为啥捏), b) edge convolution in end-to-end method limits the scalability of training time on large-scale graphs(作者后面紧跟了说边缘卷积已被证明是耗时间的)

        ⑤Prospect: combining multi-modalities to predict

dichotomize  v.二分法;对分,二分

2.3.5. Brain Graph Integration

        ①Problem statement: to learn a mapping function f:\{\mathcal{G}^i\}_{i=1}^{n_s}\mapsto\mathbf{C}, where \mathcal{G}^{s}=\{G^{m_{i}}\}_{m_{i}=1}^{n_{m}} denotes all the modalities of one subject, G^{m_i}=(N,E,\mathbf{A},\mathbf{F}) denotes a brain graph in one of the modality, n_m denotes the number of modalities, i\in\{1,\ldots,n_m\} and \mathbf{C} denotes a shared common connectivity patterns (connectional brain template (CBT))(呃呃说白了就是HC一个fingerprint图,患病一个fingerprint吗)

        ②Introducing corresponding models such as MGINet, Deep Graph Normalizer (DGN)

        ③Challenges: ⭐ the existing models do not possess an ability that integrate isomeric graphs of different subjects

2.3.6. Brain Graph Classification

        Categories: brain state classification and biomarker identification

(1)Brain State Classification

        ①Graph Embedding-Based classification

Problem statementTo learn a mapping function f:\mathbf{Z}\mapsto y, where \mathbf{Z} denotes the low-representation of the original graph G=(N,E,\mathbf{A},\mathbf{F}) and y denotes the predicted label
Examples没给模型名不想多说,都只给了引用标号
ChallengeInterpretability(哈哈哈哈哈哈哈哈哈)

        ②Graph-Based Classification

Problem statementThis method does not squeez graph presentation, using the whole brain to predict
Prediction directionClassifying sex, age or typical
ChallengeInterpretability(怎么一到了我的领域就是这,这啊...)

        ③Population-Based Classification

Problem statementTo learn a mapping function f:P\mapsto y, where P=(N_p,E_p,\mathbf{A}_p,\mathbf{F}_p) denotes population graph, N_p denotes each node (subject), E_p denotes the edge (similarity) set, \mathbf{A}_p\in \mathbb{R}^{n_s\times n_s} denotes corresponding adjacency matrix, n_s denotes the number of subjects and \mathbf{F}_p\in \mathbb{R}^{n_s\times f} is the feature matrix composed by each feature vector
Examples————
ChallengesThis model fits for large dataset, but now the brain data is scarce, which may cause over-fitting

calibration  n.校准;标定;(温度计或其他仪表上的)刻度

(2)Biomarker Identification

        ①Problem statement: identifying influential biomarkers

        ②Challenges: reproducibility (难道不能重复吗?应该也不会差很远吧) and explainability

2.4. Discussion and Outlook

2.4.1. Toward Clinical Translation

(1)Strengths and Limitations

        ①Morphological brain graph (MBG) is the most common modality in brain image analysis

        ②因为MBGs是融合了皮质厚度和脑沟深度的图像...所以它本身也带有多模态性质...6

        ③MBG presents special characters which can not be presented in structural or functional images

        ④More modalities recorded helps a dataset to complete the task which a model applied in it to predict the other modalities

(2)Reproducibility and Explainability

        ①作者认为不同的GNN框架会导致不同的分类结果和不同的生物标志物。但这不是很正常吗?又不是所有的模型都是完美的

        ②Construction methods of atlas: a) voxel, b) anatomical sulcal and gyral boundries parcellation, c) random

rationale  n.基本原理;根本原因    delineate  vt.勾画;(详细地)描述,描画,解释

disentangle  vt.使解脱;使摆脱;分清,清理出(混乱的论据、想法等);理顺;解开…的结;使脱出

(3)GNN Selection and Learning Improvement

        ①In existing works, 50% are GCN based and 50% are other model based, such as ECC, NNConv or GATConv

        ②⭐作者说这些base太多了,不知道如何选择基础模型。好的,两年后的我仍旧无法回答这个问题

betweenness  n.介数;中间性,介于

(4)Few-Shot Learning

        ①The accuracy on few-shot dataset for models are essential problem

        ②The existing work often treats the brain images of manifolds as graphics, i.e. mesh. But the mesh cannot represent the relationships between regions

2.4.2. Outlook

        ①The "holy grail" in brain region is clinical utility, the authors stated. But all I wanna say is that all the works above for clinical are b*ll sh*t. 

        ②Hhh, don't be too pessimistic

        ③The generalization ability, accuracy in small dataset, graph presentation are vital

frugal  adj.节俭的;(对金钱、食物等)节约的;简单廉价的

3. 知识补充

3.1. Structural and anatomical images

大脑的解剖像和结构像在描述大脑时各有侧重,两者之间存在一些差异。

解剖像:主要关注大脑的形态和外观。它显示大脑的各个部分,如左脑、右脑、大脑皮质、大脑髓质等,并详细描述这些部分的形状、位置和相互关系。解剖像通常通过医学成像技术(如CT扫描、MRI等)获得,可以显示大脑的宏观结构。

结构像:则更侧重于大脑的内部结构和组织。它关注大脑的微观层面,包括神经元的排列、突触的连接、神经纤维的走向等。结构像通过更精细的成像技术(如电子显微镜、高分辨率MRI等)获得,能够揭示大脑的复杂结构和功能。

简而言之,解剖像提供了大脑的整体外观和宏观结构,而结构像则提供了大脑的微观结构和组织细节。两者结合使用可以更全面地了解大脑的形态和功能。

3.2. Brain images

(1)Functional images: always named "FunRaw", obtained by fMRI

(2)Anatomical images: always named "T1Raw", obtained by sMRI

(3)Structural images: always named "T2Raw", obtained by sMRI

(4)但是作者在文章中说morphological images是T1像,而structural images来自DTI。暂时持保留意见

3.3. Dichotomized learning-based models

作者提到的二分法模型,不知道啥意思,不是我领域的吧?以下是作者给的引用:

(1)[71]基于残差嵌入相似性的网络选择预测脑网络演化轨迹 |施普林格链接 (springer.com)

(2)[72]使用深度对抗网络归一化器预测脑图随时间推移的演变 |施普林格链接 (springer.com)

3.4. Isomeric and heterogeneous

在脑科学文章里面都出现过诶,但是我盲猜分子的异构是isomeric,然后heterogeneous就是表示多种多样的

3.5. Mesh and grid

Mesh和Grid都涉及网格的概念,但它们在结构和应用上存在一些关键的区别。

结构特点:Grid通常指的是具有良好结构的网格,其元素往往以典型的正方形或矩形对齐,呈现出一种规则且有序的排列方式。相对而言,Mesh则更为通用,其结构可能非结构化,并可能使用各种形状的元素,有时甚至在同一网格中混合使用不同类型的元素。因此,Mesh在形状和结构上具有更大的灵活性和多样性。

应用场景:Grid因其结构化特性,在某些需要规则网格的应用中表现出色,如数值计算、图像处理等领域。而Mesh则因其非结构化和灵活性,在需要适应复杂形状或不规则空间的应用中更具优势,如三维建模、流体动力学模拟等。

4. Reference List

Bessadok, A., Mahjoub, M. & Rekik, I. (2022) 'Graph Neural Networks in Network Neuroscience', IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (5), pp. 5833-5848. doi: 10.1109/TPAMI.2022.3209686

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536978.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java数据结构与算法刷题-----LeetCode90. 子集 II

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 解题思路:时间复杂度O( n 2 ∗ n n^2*n n2∗n),空间复杂度O(n) 7…

[RoarCTF 2019]Easy Java -不会编程的崽

考察一下大家对java-web知识点的掌握 熟悉的登录界面让你想起了某位故人没有&#xff0c;哈哈&#xff0c;但是并非sql注入。一番基础尝试无果后&#xff0c;看看help吧 这个url让你想起某位故人了吗&#xff1f;对文件下载。但是似乎没有响应。改成post请求即可。 我看见pk了&…

STM32第七节:GPIO输入——按键检测(包含带参宏)

目录 前言 STM32第七节&#xff1a;GPIO输入——按键检测&#xff08;包含带参宏&#xff09; 带参宏 代码替换展示 定义带参宏 GPIO输入——按键检测 硬件部分 端口输入数据寄存器&#xff08;GPIOx_IDR&#xff09; 编写程序 配置以及编写bsp_key文件 main函数编程…

04_拖动文件渲染在页面中

新建一个文件夹&#xff0c;跟之前一样&#xff0c;在 Vscode 终端里输入 yarn create electron-app Drag。 在 index.html 添加以下代码&#xff0c;JS 文件夹和 render.js 都是新创建的&#xff1a; 首先&#xff0c;css 文件一般和 html 结合使用&#xff0c;相当于 html 是…

Linux字符设备驱动开发一

linux字符设备驱动 0 驱动介绍1 字符设备驱动1.1 字符设备相关概念和结构体1.2 实现简单的字符设备模块1.3 创建字符设备1.4 总结 应用程序调用文件系统的API(open、close、read、write) -> 文件系统根据访问的设备类型&#xff0c;调用对应设备的驱动API -> 驱动对硬件进…

用微信小程序开启桶装水订购业务

在当今的数字化时代&#xff0c;微信小程序已经成为一种非常流行的在线购物方式。对于桶装水配送行业&#xff0c;利用微信小程序可以提供更加方便快捷的服务&#xff0c;同时也可以提高门店的管理效率。本文将介绍如何制作一个微信小程序&#xff0c;用于支持桶装水配送门店多…

Flask开发类似jenkins构建自动化测试任务工具

1、自动化 某一天你入职了一家高大上的科技公司&#xff0c;开心的做着软件测试的工作&#xff0c;每天点点点&#xff0c;下班就走&#xff0c;晚上陪女朋友玩王者&#xff0c;生活很惬意。 但是美好时光一般不长&#xff0c;这种生活很快被女主管打破。为了提升公司测试效率…

模拟电子技术实验(三)

单选题 1.本实验的实验目的中&#xff0c;输出电阻测量是第几个目的&#xff1f; A. 1个。 B. 2个。 C. 3个。 D. 4个。 答案&#xff1a;C 评语&#xff1a;10分 单选题 2. 有一定输出功率的放大器的 “功率”下面理解正确的是&#xff1f; A. 能…

车辆路径优化问题(VRP)变体及数学模型

车辆路径优化问题变体及数学模型 一、旅行商问题&#xff08;Travelling salesman problem&#xff0c;TSP&#xff09;TSP问题数学模型TSP问题求解 二、车辆路径问题&#xff08;Vehicle Routing Problem&#xff0c;VRP&#xff09;三、带容量约束的车辆路径优化问题&#xf…

【Web】浅聊XStream反序列化本源之恶意动态代理注入

目录 简介 原理 复现 具体分析之前 我们反序列化了个什么&#xff1f; XStream反序列化的朴素通识 具体分析 第一步&#xff1a;unmarshal解组 第二步&#xff1a;readClassType获取动态代理类的Class对象 第三步&#xff1a;调用convertAnother对动态代理类进行实例…

自适应窗口图片轮播HTML代码

自适应窗口图片轮播HTML代码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 代码下载地址 自适应窗口图片轮播HTML代码

Python之requests实现github模拟登录

文章目录 github 模拟登录前言模拟登录流程抓包操作查看登录表单的内容登录操作 模拟登录操作在 main函数的调用获得 auth_token调用/session接口登录处理检测登录是否成功 总结&#xff1a; github 模拟登录 前言 前面学习了requests模块的基础学习后&#xff0c;接下来做一个…