Flask开发类似jenkins构建自动化测试任务工具

1、自动化

某一天你入职了一家高大上的科技公司,开心的做着软件测试的工作,每天点点点,下班就走,晚上陪女朋友玩王者,生活很惬意。

但是美好时光一般不长,这种生活很快被女主管打破。为了提升公司测试效率,公司决定引入自动化流程,你在网上搜了一套技术方案 python + selenium,迅速写了一套自动化测试的脚本。

 
  1. from selenium import webdriver

  2. def test_selenium():

  3. driver = webdriver.Firefox()

  4. driver.get("http://www.baidu.com")

  5. ...

  6. driver.quit()

  7. ...

编写脚本的日子很累,你需要每天加班,而且没有加班工资。 虽然如此,你也没有太多怨言,因为你能明显感觉到自己一点点掌握了自动化测试的流程,正在踏入职业发展的新阶段。这套脚本很快用于公司的主流程测试,也会在回归测试中使用。

因为大量的重复劳动都可以用这套自动化测试脚本代替,于是你又有时间陪女朋友了,上班也可以偶尔划水了,也可以时不时瞄一瞄自己的基金有没有涨。

当然,美好时光一般不长。在一次大改版中,前端页面发生了大量变化,你的自动化测试代码因为没有做抽象封装,基本已经不能用了。

又可以加班了,生活又可以充实起来了。你动用了一些像 PageObject 的模式对代码进行了重新设计,也加入了关键字驱动,尽量让测试逻辑变成可配置的。 设计完成以后,当前端页面变化时,只需要重点维护关键字表格。
image-20220317141005833

你又为公司做了一些贡献,你已经完全胜任自动化测试的工作,甚至能够带一两个小弟。他们时不时找你问一些问题,但是对于自动化的维护工作还是要靠你自己,当你请假时,这些工作只能停滞。于是公司希望你做一些改进,让功能测试人员也可以运行这些自动化测试。

2、开始测试平台

你看到网上有很多人提到测试平台,想着自己也可以做一个可视化平台,这样功能测试人员也可以通过在界面上进行简单的设置,就可以使用底层的自动化代码了。很快 flask 出现在你的视线中,你做的第一个功能就是实现类似于 jenkins 的构建功能。

首先,你搭建了一个 flask 服务,服务启动后,你能顺利访问 5000 端口。

 
  1. from flask import Flask

  2. app = Flask(__name__)

  3. app.run(port=5000)

然后,你配置了一个 url 地址,当访问这个 url 地址时,服务会调用一个函数,这个 url 和函数的绑定关系就是路由。函数的返回值可以是普通字符串,可以是 json 数据,也可以是 html 页面

 
  1. @app.route('/')

  2. def index():

  3. "show all projects in workspace dir"

  4. workspace = pathlib.Path(app.root_path) / 'workspace'

  5. projects = [project.name for project in workspace.iterdir()]

  6. return render_template('index.html', projects=projects)

 上面的代码就是模仿 jenkins, 把自动化测试的脚本放在项目的 workspace 目录下,当访问 / 根路径时,index 函数就会被调用。index 函数的作用就是列举 workspace 目录下的所有项目名,通过 return 展示在前端界面。具体的前端代码如下:

 
  1. <h2>展示所有的项目</h2>

  2. {% for p in projects %}

  3. <div>

  4. {{ p }}

  5. <a href="/build?project={{p}}">构建</a>

  6. </div>

  7. {% endfor %}

image-20220317141024036

在页面上点击构建,程序会跳转到 flask 设置好的 /build 这个 url 中,这个路由负责运行自动化测试的代码,他会接收用户传过来的 project 参数,找到在 workspace 目录下的项目,再执行自动化测试指令(这里统一用 pytest 指令)。

 
  1. @app.route("/build", methods=['get', 'post'])

  2. def build():

  3. project_name = request.args.get('project')

  4. pytest.main([f'workspace/{project_name}'])

  5. return "build success"

 到目前为止,完整的流程是这样的:首先,在平台首页会展示所有可以构建的项目,这些项目其实就是把 workspace 子目录当中的目录名列举出来;然后,点击项目旁边的构建按钮,跳转到 /build,根据项目名称执行自动化指令,等待自动化任务执行完成,返回 build success。

3、优化

你基本上已经实现了功能,现在功能测试人员可以通过你搭建的简易平台执行自动化命令。但是这个平台还存在一些问题:第一、没有收集到构建信息,无法查看测试之后的结果;第二、用户必须等待自行测试脚本执行完成,才能返回前端具体的结果,如果自动化测试的执行时间很长,用户会一直停在这个页面,无法做其他事情。

你想到了并发编程,创建一个子进程单独去运行自动化测试脚本,因为子进程可以和主进程独立,所以不需要等待子进程执行完成,主进程就可以立即给前端返回结果。于是你重新编写了 build 函数:
 

 
  1. @app.route("/build")

  2. def build():

  3. id = uuid.uuid4().hex

  4. project_name = request.args.get('project')

  5. with open(id, mode='w', encoding='utf-8') as f:

  6. subprocess.Popen(

  7. ['pytest', f'workspace/{project_name}'],

  8. stdout=f

  9. )

  10. return redirect(f'/build-history/{id}')

1、首先,通过 uuid 生成一个 id 号来表示这一次构建任务,之后可以通过这个 id 号查看此次构建的记录;

2、通过 subprocess 创建子进程运行自动化任务,把输出结果保存到文件当中,文件名就是生成的 id 号,之后想查看构建的结果时,只需要读取这个文件当中的内容;

3、只要子进程创建成功,马上通过 redirect 重定向到查看结果的 url, 此时并不需要等到子进程执行完就可以查看构建结果。

查看构建结果只需要通过 id 读取文件中的内容返回。
 

 
  1. @app.route("/build-history/<id>")

  2. def build_history(id):

  3. with open(id, encoding='utf-8') as f:

  4. data = f.read()

  5. return data

4、生成器

上面读取文件的代码有点问题。当构建重定向到 /build-histrory 后,此时自动化测试脚本才刚刚执行,读取文件中的内容是空的。只有当测试脚本运行,产生越来越多的运行记录,文件中才会出现更多的内容,你必须手动刷新页面才能获取这些新内容。 当自动化任务执行时间很长的时候,你需要不停的刷新 /build-history 页面才能获取最新的构建信息。直到子进程结束,不再有新的内容被写入文件。

image-20220317141207731

为了动态获取文件数据,你使用了生成器惰性获取数据,在 /build-history 的页面加载过程中,只要运行自动化任务的子进程还在运行,就不停的读取文件内容,将它们动态的返回给前端页面。

为了判断子进程的状态,在 /build 的时候,把子进程的 pid 传给 /build-history。

 
  1. @app.route("/build", methods=['get', 'post'])

  2. def build():

  3. id = uuid.uuid4().hex

  4. project_name = request.args.get('project')

  5. with open(id, mode='w', encoding='utf-8') as f:

  6. proc = subprocess.Popen(

  7. ['pytest', f'workspace/{project_name}'],

  8. stdout=f

  9. )

  10. return redirect(f'/build-history/{id}?pid={proc.pid}')

 在查看结果时,先编写一个生成器 stream, 每次读取文件中 100 长度的数据,直到进程运行结束。除了通过构建后的重定向,你也可以手动输入 id,查看历史构建记录。此时只需传 id, 不需要传进程名,直接读取文件中的数据。就算文件特别大,也可以通过批量加载,不至于因为同时读取大量数据给服务器造成压力。
 

 
  1. import psutil

  2. @app.route("/build-history/<id>")

  3. def build_history(id):

  4. pid = request.args.get('pid', None)

  5. def stream():

  6. f = open(id, encoding='utf-8')

  7. if not pid:

  8. while True:

  9. data = f.read(100)

  10. if not data:

  11. break

  12. yield data

  13. else:

  14. try:

  15. proc = psutil.Process(pid=int(pid))

  16. except:

  17. return 'no such pid'

  18. else:

  19. while proc.is_running():

  20. data = f.read(100)

  21. yield data

  22. return Response(stream())

最后效果:

5、总结

一般来说,做自动化测试只需要做到第一步,有脚本可以执行,就可以代替重复劳动。做测试平台只是让脚本变得更加好用。

但是有很多的测试平台让自动化运行起来更加复杂,要配置很多很多参数才能跑一个完整的测试用例,这似乎有点折本求末,也是很多人都在做的事情。

本文通过 flask 程序实现了一个最简单的 toy jenkins,辅助理解像 jenkins 这样的工具如何执行任务。其实像简单的构建任务,做起来也有很多问题需要解决,这些只有在遇到具体业务的时候我们才会去思考。

希望我们做的工具都是实用的,好用的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/536965.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模拟电子技术实验(三)

单选题 1.本实验的实验目的中&#xff0c;输出电阻测量是第几个目的&#xff1f; A. 1个。 B. 2个。 C. 3个。 D. 4个。 答案&#xff1a;C 评语&#xff1a;10分 单选题 2. 有一定输出功率的放大器的 “功率”下面理解正确的是&#xff1f; A. 能…

车辆路径优化问题(VRP)变体及数学模型

车辆路径优化问题变体及数学模型 一、旅行商问题&#xff08;Travelling salesman problem&#xff0c;TSP&#xff09;TSP问题数学模型TSP问题求解 二、车辆路径问题&#xff08;Vehicle Routing Problem&#xff0c;VRP&#xff09;三、带容量约束的车辆路径优化问题&#xf…

【Web】浅聊XStream反序列化本源之恶意动态代理注入

目录 简介 原理 复现 具体分析之前 我们反序列化了个什么&#xff1f; XStream反序列化的朴素通识 具体分析 第一步&#xff1a;unmarshal解组 第二步&#xff1a;readClassType获取动态代理类的Class对象 第三步&#xff1a;调用convertAnother对动态代理类进行实例…

自适应窗口图片轮播HTML代码

自适应窗口图片轮播HTML代码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面&#xff0c;重定向这个界面 代码下载地址 自适应窗口图片轮播HTML代码

Python之requests实现github模拟登录

文章目录 github 模拟登录前言模拟登录流程抓包操作查看登录表单的内容登录操作 模拟登录操作在 main函数的调用获得 auth_token调用/session接口登录处理检测登录是否成功 总结&#xff1a; github 模拟登录 前言 前面学习了requests模块的基础学习后&#xff0c;接下来做一个…

Vulnhub - DC-1

希望和各位大佬一起学习&#xff0c;如果文章内容有错请多多指正&#xff0c;谢谢&#xff01; 个人博客链接&#xff1a;CH4SER的个人BLOG – Welcome To Ch4sers Blog DC-1 靶机下载地址&#xff1a;DC: 1 ~ VulnHub 0x01 信息收集 Nmap扫描目标主机&#xff0c;发现开…

链路聚合实验(思科)

华为设备参考&#xff1a; 一&#xff0c;技术简介 网络设备的链路聚合技术&#xff08;Link Aggregation&#xff09;是一种将多个物理链路捆绑在一起&#xff0c;形成一个逻辑链路的技术。这样做可以增加带宽、提高可靠性和实现负载均衡。 二&#xff0c;实验目的 橙色的阻…

【C++】—— 代理模式

目录 &#xff08;一&#xff09;什么是代理模式 &#xff08;二&#xff09;为什么使用代理模式 &#xff08;三&#xff09;代理模式实现步奏 &#xff08;四&#xff09;代码示例 &#xff08;五&#xff09;代理模式优缺点 &#xff08;一&#xff09;什么是代理模式 …

【代码随想录 | 链表 03】两两交换链表中的节点

文章目录 3.两两交换链表中的节点3.1题目3.2解法&#xff1a;虚拟头节点 3.两两交换链表中的节点 3.1题目 24.两两交换链表中的节点——力扣链接 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下…

数字孪生与智慧城市:实现城市治理现代化的新路径

随着信息技术的迅猛发展&#xff0c;智慧城市已成为城市发展的必然趋势。数字孪生技术作为智慧城市建设的重要支撑&#xff0c;以其独特的优势为城市治理现代化提供了新的路径。本文将探讨数字孪生技术在智慧城市中的应用&#xff0c;以及如何实现城市治理的现代化。 一、数字…

Games101笔记-变换

Scale Reflection Shear Rotate 没有额外提示默认绕原点旋转 线性变换 Transiation 不属于线性变换&#xff0c;仿射变换 齐次坐标 二维的点和向量增加一个维度 点加点等于两个点的中点 所有的仿射变换都可以写成齐次坐标的形式 在表示二维情况下的仿射变换时&#…

音视频开发之旅(75)- AI数字人进阶--GeneFace++

目录 1.效果展示和玩法场景 2.GeneFace原理学习 3.数据集准备以及训练的过程 5.遇到的问题与解决方案 6.参考资料 一、效果展示 AI数字人进阶--GeneFace&#xff08;1&#xff09; AI数字人进阶--GeneFace&#xff08;2&#xff09; 想象一下&#xff0c;一个专为你打造的…