【小白学机器学习9】自己纯手动计算验证,EXCEL的一元线性回归的各种参数值

目录

0 目标

1 构造模型 

1.1 构造模型的思路

1.2 具体模型构造的EXCEL公式和过程

2 直接用EXCEL画图,然后生成趋势线的方式进行回归分析

2.1 先选择“观测值Y”的数据,用散点图或者折线图作图

2.2  然后添加趋势线和设置趋势线格式

2.3  生成趋势线

3 使用EXCEL的 数据/数据分析/回归功能

3.1 功能入口:数据/数据分析/回归功能

3.2 进行回归时,需要注意2个点

3.3 回归分析的结果

4 逐个手动重算“回归统计”里的几个指标

4.1 相关系数

4.1.1 公式

4.1.2  以下是详细计算过程

4.2  先求 SSE SSR SST 以及OLS,再求R2

 4.3 决定系数R**2

4.3.1 公式

4.3.2  R2具体计算

4.4 调整后的R2

4.5 标准误差  SEE

4.6 观测值

5  逐个手动重算“方差分析”里的几个指标

5.1 自由度 DF

5.2 关于SS离差的3个类型 SSR, SSE ,SST

5.3  均方MS

5.3.1 定义

5.3.2  公式

6 RESIDUAL OUTPUT

6.1 残差= y=y^= 观测值-预测值

7 多个模拟直线比较

8 未完成的部分 F检验的显著度 和 T检验的P值 (需要学习F检验,T检验的知识!)

9 未解决的问题

10 python 模拟实操,缺!


0 目标

  • 目标:用EXCEL做一元线性回归的各种参数,手动计算验证EXCEL计算的各个参数的值,自己重新算一遍,了解具体的公式计算过程。
  • 为什么要这么做
    • 看了这么多讲指标运算公式的,大多数都是推导。但很少见到有自己手动,完全验证一遍这些指标计算公式实操的,我自己试试。
  • 目的2个:
    • 还能验证自己整理的公式的对错。
    • 可以加深对公式的理解

1 构造模型 

1.1 构造模型的思路

  • 正常思路:(先有我们大脑里的理想值,也就是假设)→先有观测值 →再回归模型→预测值
  • 我的构造思路: 先作假一个理想数据(公式生成)→生造观测值(加rand扰动)→再回归模型→预测值
  • 为什么要这么搞?
  • 这样我自己相当于,先掌握了理想数据=“正确答案”,然后可以比较到底什么样的模拟更接近我这个预设的正确答案。

1.2 具体模型构造的EXCEL公式和过程

  • 理想数据
    • X:1,2 ...15
    • Y: Y=2x+3
  • 观测值
    • y=y~real+RANDBETWEEN(-3,3)

2 直接用EXCEL画图,然后生成趋势线的方式进行回归分析

见下图

2.1 先选择“观测值Y”的数据,用散点图或者折线图作图

作图格式

  • 可以选择连线的散点图,或者折线图

2.2  然后添加趋势线和设置趋势线格式

  • 因为做的是一元线性回归,这里记得选择直线

 

2.3  生成趋势线

生成一个一元函数的趋势线: 直线

  • 其中 y=ax+b,具体为y=2.33306x
  • a=2.33306
  • b=0
  • R**2=0.9749

3 使用EXCEL的 数据/数据分析/回归功能

  • 基本内容如下

3.1 功能入口:数据/数据分析/回归功能

3.2 进行回归时,需要注意2个点

  • 1 注意回归面板上,Y值在上面,X值在下面。容易选错
  • 2 下面哪些勾选项,做简单回归分析可以不勾
  • 3 详细的回归可以都勾选

 

3.3 回归分析的结果

4 逐个手动重算“回归统计”里的几个指标

4.1 相关系数

4.1.1 公式

4.1.2  以下是详细计算过程

  • 手动计算的和回归分析的R相等
  • 求和不要犯低级错误 Σ(x-ave(x))*(y-ave(y)) !=Σ(x-ave(x))*Σ(y-ave(y))
  • R=Σ((x-ave(x))*(y-ave(y))) /SQRT(Σ(x-ave(x))^2*Σ(y-ave(y))^2)

4.2  先求 SSE SSR SST 以及OLS,再求R2

  • SSE: 残差平方和, Σ(y-y^'')^2  
  • SSR:回归平方和 ,Σ(y^''-ave(y))^2  
  • SST:离差平方和,总体平方和, Σ(y-ave(y))^2
  • OLS最小二乘法的=SS=SSE=残差平方和

 4.3 决定系数R**2

4.3.1 公式

4.3.2  R2具体计算

4.4 调整后的R2

  • 修正的R2确实不适合一元线性回归
  • K=变量个数
  • 只有1个变量是,修正的R2会变小
  • 修正的R2看起来确实只适合多元线性回归

4.5 标准误差  SEE

  • 标准误差SEE
  • SEE = sqrt(Σ(y - y^'')^² / (n - k - 1))    
  • SEE = sqrt(SSE / (n - k - 1))
  • 并不是 /n

4.6 观测值

观测值=样本数量=15,没什么好说的。

5  逐个手动重算“方差分析”里的几个指标

  • df:degree of freedom  自由度
  • ss:离均差平方和
  • ms :均方

5.1 自由度 DF

详细内容看上次的关于自由度的文章

【小白学机器学习8】统计里的自由度DF=degree of freedom, 以及关于df=n-k, df=n-k-1, df=n-1 等自由度公式-CSDN博客文章浏览阅读698次,点赞13次,收藏12次。自由度通常用于抽样分布中。统计学中:在统计模型中,自由度指样本中可以自由变动的独立不相关的变量的个数,当有约束条件时,自由度减少。样本中独立或能自由变化的数据的个数,称为该统计量的自由度。自由度(degree of freedom, df)指的是计算某一统计量时,取值不受限制的变量个数。https://blog.csdn.net/xuemanqianshan/article/details/136643151?spm=1001.2014.3001.5502

  • 回归分析的df,y=a+bx,因为只有1个自变量,所以df=1
  • 残差SSE的df
    • 这里面需要确定a 和b两个参数,其中a是截距,而b 是x的参数。
    •  因为自由度=n-k, 而SSE=Σ(y-y^'')^2 = Σ(y-(a+bx))^2  ,所以df=n-k=n-2=15-2=13
    • 或者用多元线性回归的公式 df=n-k-1=15-1-1=13
  • 总计的df=方程的df+样本的df=1+13=14

5.2 关于SS离差的3个类型 SSR, SSE ,SST

见上面的分析

5.3  均方MS

5.3.1 定义


MS是均方
方差分析中的MS是均方(离差平方和除以自由度)
在这里具体是 均方误差

5.3.2  公式

  • Mean Square Error 均方误差
  • MSE = Σ(y - ŷ)²/n    这里n是自由度
  • MSE =  Σ(y - ŷ)²/df

6 RESIDUAL OUTPUT

6.1 残差= y=y^= 观测值-预测值

7 多个模拟直线比较

  • 暂时看略有差别,差别不大

8 未完成的部分 F检验的显著度 和 T检验的P值 (需要学习F检验,T检验的知识!)

  • Significance F:越小说明拟合越好
  • T检验的P-value:越小说明拟合越好

9 未解决的问题

比如一元线性回归模型中,关于y=ax+b,这里面a  和 b 的标准误差是怎么求出来的?

网上也有人提出了这样的问题,暂时我没看明白,留着

一元回归结果当中,斜率的标准误差是怎么计算出来的? - 知乎回归系数不是一个确定的值,相反它是一个随机变量,也就是说你不同样本回归得到的回归系数是不一样的,举…icon-default.png?t=N7T8https://www.zhihu.com/question/297956772/answer/1032593129?utm_id=0

一元回归结果当中,斜率的标准误差是怎么计算出来的? - 知乎深夜吃西瓜碰到回答一下!!首先,记住因为误差项的存在,所以参数的方差才不等于0,只要理解了回归的含…icon-default.png?t=N7T8https://www.zhihu.com/question/297956772/answer/1302721483

其他

RM

回归模型(regression model)对统计关系进行定量描述的一种数学模型。如多元线性回归的数学模型可以表示为y=β0+β1*x+εi,式中,β0,β1,…,βp是p+1个待估计的参数,εi是相互独立且服从同一正态分布N(0,σ2)的随机变量,y是随机变量;x可以是随机变量,也可以是非随机变量,βi称为回归系数,表征自变量对因变量影响的程度。

OLS,是 普通最小二乘回归模型

ols 全称ordinary least squares,是回归分析(regression analysis)最根本的一个形式

10 python 模拟实操,缺!


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539793.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

P6技巧:如何提高P6系统的安全性

前言 我们访问的几乎每个客户都使用与各个数据库用户相同的密码安装 Oracle Primavera P6。如果这听起来很熟悉,那么请继续阅读并了解如何提高 Primavera P6 的安全性。 Oracle Primavera P6 EPPM的出现吸引了比以往更多的数据库系统用户以及应用服务器管理员。 这…

企业架构设计方法与实践中的架构治理演进、架构评估方法、架构成熟度模型

企业架构设计方法与实践中的架构治理演进、架构评估方法、架构成熟度模型。 架构治理演进: 架构治理是指通过设立和执行一套政策和程序,来管理和控制一个组织的架构活动。架构治理演进是一个持续的过程,需要根据组织的实际情况进行定期审查和调整。 在演进过程中,重点需要…

【SpringCloud微服务实战08】RabbitMQ 消息队列

MQ异步通信优缺点: 优点: 吞吐量提升:无需等待订阅者处理完成,响应更快速 故障隔离:服务没有直接调用,不存在级联失败问题 调用间没有阻塞,不会造成无效的资源占用 耦合度极低,每个服务都可以灵活插拔,可替换 流量削峰:不管发布事件的流量波动多大,都由Broker接收,…

Github 2024-03-15 Java开源项目日报 Top10

根据Github Trendings的统计,今日(2024-03-15统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目9非开发语言项目1TypeScript项目1《Hello 算法》:动画图解、一键运行的数据结构与算法教程 创建周期:476 天协议类型:OtherStar数量…

.NET高级面试指南专题十七【 策略模式模式介绍,允许在运行时选择算法的行为】

介绍: 策略模式是一种行为设计模式,它允许在运行时选择算法的行为。它定义了一系列算法,将每个算法封装到一个对象中,并使它们可以互相替换。这使得算法可独立于使用它的客户端变化。 原理: 策略接口(Strat…

机器学习 --- 模型评估、选择与验证

Java实训代码、答案,如果能够帮到您,希望可以点个赞!!! 如果有问题可以csdn私聊或评论!!!感谢您的支持 第1关:为什么要有训练集与测试集 1、下面正确的是?&…

HBase分布式数据库的原理和架构

一、HBase简介 HBase是是一个高性能、高可靠性、面向列的分布式数据库,它是为了在廉价的硬件集群上存储大规模数据而设计的。HBase利用Hadoop HDFS作为其文件存储系统,且Hbase是基于Zookeeper的。 二、HBase架构 *图片引用 Hbase采用Master/Slave架构…

气压计LPS25HB开发(1)----轮询获取气压计数据

气压计LPS25HB开发----1.轮询获取气压计数据 概述视频教学样品申请源码下载产品特性通信模式速率生成STM32CUBEMX串口配置IIC配置SA0地址设置串口重定向参考程序SA0设置模块地址获取ID复位操作BDU设置设置速率轮询读取数据演示 概述 本文将介绍如何使用 LPS25HB 传感器来读取数…

Unity Timeline学习笔记(1) - 创建TL和添加动画片段

Timeline在刚出的时候学习了一下,但是因为一些原因一直都没用在工作中使用。 版本也迭代了很久不用都不会用了,抽时间回顾和复习一下,做一个笔记后面可以翻出来看。 创建Timeline 首先我们创建一个场景,放入一个Plane地板&#…

中间件漏洞(redis)

目录 1.Redis服务器被挖矿案例 2.redis常见用途 3.redis环境配置 4.redis的持久化机制 5.redis动态修改配置 6.webshell提权案例 7.定时任务bash反弹连接提权案例 8.SSH Key提权案例 9.redis安全加固分析 1.Redis服务器被挖矿案例 我没有体验过,那就看看别…

CompletableFuture原理与实践-外卖商家端API的异步化

背景 随着订单量的持续上升,美团外卖各系统服务面临的压力也越来越大。作为外卖链路的核心环节,商家端提供了商家接单、配送等一系列核心功能,业务对系统吞吐量的要求也越来越高。而商家端API服务是流量入口,所有商家端流量都会由…

【论文笔记合集】LSTNet之循环跳跃连接

本文作者: slience_me LSTNet 循环跳跃连接 文章仅作为个人笔记 论文链接 文章原文 LSTNet [25] introduces convolutional neural networks (CNNs) with recurrent-skip connections to capture the short-term and long-term temporal patterns. LSTNet [25]引入…