【深度学习】diffusers 学习过程记录,StableDiffusion扩散原理

教程地址:https://huggingface.co/docs/diffusers/quicktour

文章目录

  • 环境
  • 扩散模型
  • 噪声残差的作用
  • 原理,文字编码如何给入Unet
  • scheduler
  • guidance_scale
  • scheduler.init_noise_sigma
  • 训练时候的反向传播

环境

python3.10安装环境:

pip install --upgrade diffusers accelerate transformers

扩散模型

不同的调度器具有不同的去噪速度和质量权衡。找出哪种对您最有效的方法是尝试它们!🧨 Diffusers 的主要特点之一是允许您轻松切换调度器。例如,要用 EulerDiscreteScheduler 替换默认的 PNDMScheduler,请使用 from_config() 方法加载它:

扩散模型(如Stable Diffusion)通过逐步添加和去除噪声的过程生成数据(如图像或音频)。这一过程包括两个主要阶段:正向扩散(forward diffusion)和逆向扩散(reverse diffusion)。
正向扩散(添加噪声)

正向扩散阶段是一个逐步的过程,其中原始数据(比如一张图像)逐渐被加入噪声,直到完全变为随机噪声。这一过程通常通过多个时间步骤进行,每一步都会在图像上添加一层噪声。正向扩散的最终结果是一张与原始图像毫无关系的纯随机噪声图像。这个过程是预设的,并不涉及学习。
逆向扩散(去除噪声)

逆向扩散是一个更为复杂的过程,其目的是将加噪后的图像逐步恢复到原始状态或生成新的数据。这个过程从纯噪声开始,逐步去除噪声,最终生成清晰的图像或数据。逆向扩散的每一步都需要预测给定噪声图像与其更少噪声状态之间的噪声残差,然后使用这个预测来更新当前噪声图像,使其更接近无噪声的状态。这一步骤是通过训练深度学习模型完成的,模型学会如何基于当前的噪声图像预测噪声残差。

噪声残差的作用

在逆向扩散过程中,噪声残差的概念至关重要。噪声残差是指当前噪声图像与去除一定噪声后应有的状态之间的差异。模型的任务是预测这一残差,然后用它来更新当前的噪声图像,从而一步步减少图像中的噪声。通过这种方式,模型能够从纯随机噪声中逐步构造出有意义的图像或数据。
总之,扩散模型通过正向扩散将数据转换为噪声,然后通过训练一个深度学习模型来逆向这一过程,从噪声中恢复出有意义的数据。噪声残差的预测是逆向扩散阶段的核心,使模型能够逐步减少噪声,最终生成清晰的图像或其他类型的数据。

原理,文字编码如何给入Unet

http://shiyanjun.cn/archives/2212.html

在这里插入图片描述

scheduler

scheduler.timesteps是什么,为什么是这样的数字:
[980, 960, 940, 920, 900, 880, 860, 840, 820, 800, 780, 760, 740, 720,
700, 680, 660, 640, 620, 600, 580, 560, 540, 520, 500, 480, 460, 440,
420, 400, 380, 360, 340, 320, 300, 280, 260, 240, 220, 200, 180, 160,
140, 120, 100, 80, 60, 40, 20, 0]

scheduler.timesteps 是一组数字,代表在扩散过程中使用的时间步。这些数字从高到低排列,表示从纯噪声开始逐步去除噪声的过程,直至生成最终图像。数字之所以是这样的(从980递减到0),是因为它们代表了不同的噪声级别。在扩散模型中,较高的数字对应于更多的噪声,而0表示没有噪声。这个序列是根据模型的训练和预期输出精细调整的,以最优化图像生成过程。

**scheduler(调度器)**的作用是在每个时间步管理噪声的减少过程。具体来说,scheduler.step函数接受模型预测的噪声残差、当前时间步t和当前的图像(或噪声)状态input,然后计算并返回下一个时间步的图像状态。这个步骤是通过将预测的噪声残差与当前状态结合,按照时间步指示的噪声级别调整,从而实现逐步去噪的目的。

guidance_scale

guidance_scale 是一个参数,它控制了在生成图像时,文本提示(prompt)的权重有多大。较高的guidance_scale值意味着文本提示将对生成的图像有更大的影响,这通常用于提高图像与文本描述之间的一致性。这是一种在无条件和有条件路径之间进行权衡的方法,可以帮助模型更准确地按照文本提示生成图像。

noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

通过加权调整这两部分的差异,应用引导尺度(guidance_scale),增强文本条件对最终生成效果的影响。这个过程有助于在遵循文本提示的同时,增加生成图像的多样性和质量。

scheduler.init_noise_sigma

latents = latents * scheduler.init_noise_sigma 这一步意味着用初始噪声标准差(init_noise_sigma)缩放随机噪声(latents)。init_noise_sigma是一个预设值,决定了随机噪声的初始强度,对应于扩散过程的开始。这是准备初始随机噪声以匹配模型期望的噪声分布的一种方式。

训练时候的反向传播

https://huggingface.co/docs/diffusers/tutorials/basic_training

在这个程序中,反向传播的过程是通过 accelerator.backward(loss) 实现的。首先,来看一下整个训练循环中与反向传播相关的几个关键步骤,并解释其中的每一步。

关键步骤解释

正向传播(Forward Pass): 在正向传播阶段,模型接收带有噪声的图像 noisy_images 和对应的时间步 timesteps 作为输入,然后输出预测的噪声 noise_pred。
noise_pred = model(noisy_images, timesteps, return_dict=False)[0]

损失计算: 使用预测的噪声和实际加到干净图像上的噪声之间的均方误差(Mean Squared Error, MSE)来计算损失。
loss = F.mse_loss(noise_pred, noise)

F.mse_loss 计算预测噪声和实际噪声之间的差异,这是模型优化的目标。

反向传播(Backward Pass): 通过 accelerator.backward(loss) 调用反向传播。这一步计算了 loss 相对于模型参数的梯度。
accelerator.backward(loss)

在这里,accelerator 对象自动处理了梯度的计算和反向传播。accelerator 是 Accelerate 库的一个组件,它简化了在不同硬件上进行混合精度训练和梯度累积的复杂性。

梯度裁剪: 为了防止梯度爆炸,对模型参数的梯度进行裁剪。
accelerator.clip_grad_norm_(model.parameters(), 1.0)

参数更新: 使用优化器(如SGD、Adam等)更新模型参数。
optimizer.step()

在这一步中,根据梯度和学习率调整模型权重,以最小化损失函数。

学习率调整: 根据学习率调度器更新学习率,以改善训练过程中的学习效率。
lr_scheduler.step()

梯度清零: 在下一次训练迭代开始前,清除旧的梯度,防止梯度累加。
optimizer.zero_grad()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539806.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CMAKE_CUDA_ARCHITECTURES set to ‘native’多版本与版本号矛盾问题,报错

CMAKE_CUDA_ARCHITECTURES set to ‘native’多版本与版本号矛盾问题,报错 1. 报错提醒如下图2. 原因本地安装多个cuda版本导致native寻找到多个版本,导致报错3. 具体配置需要根据你的显卡型号来确认 1. 报错提醒如下图 2. 原因本地安装多个cuda版本导致…

C++——类和对象(1)

1. 面向对象和面向过程对比 当涉及到编程范式时,两个主要的方法是面向对象编程(Object-Oriented Programming,OOP)和面向过程编程(Procedural Programming)。这两种编程范式在解决问题和组织代码时有着不同…

每周一算法:迭代加深搜索

题目链接 加成序列 题目描述 满足如下条件的序列 X X X&#xff08;序列中元素被标号为 1 、 2 、 3 … m 1、2、3…m 1、2、3…m&#xff09;被称为加成序列&#xff1a; X [ 1 ] 1 X[1]1 X[1]1 X [ m ] n X[m]n X[m]n X [ 1 ] < X [ 2 ] < … < X [ m − 1 ]…

Redis:持久化、线程模型、大 key

Redis持久化方式有什么方式&#xff1f; Redis 的读写操作都是在内存中&#xff0c;所以 Redis 性能才会高&#xff0c;但是当 Redis 重启后&#xff0c;内存中的数据就会丢失&#xff0c;那为了保证内存中的数据不会丢失&#xff0c;Redis 实现了数据持久化的机制&#xff0c…

YOLOV5 部署:QT的可视化界面推理(创建UI,并编译成py文件)

1、前言 之前用YOLOV5 做了一个猫和老鼠的实战检测项目,本章将根据之前训练好的权重进行部署,搭建一个基于QT的可视化推理界面,可以检测图片和视频 本章使用的数据集和权重参照:YOLOV5 初体验:简单猫和老鼠数据集模型训练-CSDN博客 可视化界面如下: 2、安装Pyside6 本…

使用helm部署clickhouse

&#xff08;作者&#xff1a;陈玓玏&#xff09; 前置条件 已安装 Kubernetes 集群&#xff1b; 已安装 Helm 包管理工具。 部署 1 添加 RadonDB ClickHouse 的 Helm 仓库 helm repo add ck https://radondb.github.io/radondb-clickhouse-kubernetes/ helm repo upd…

Figure与OpenAI 联手推出新机器人;荣耀首款「AI PC」即将发布

▶ Figure 与 OpenAI 联手推出新机器人 AI 机器人公司 Figure 发布了他们与 OpenAI 的合作成果&#xff0c;将 OpenAI 的大模型运用在其机器人 Figure 01 上。 据介绍&#xff0c;OpenAI 大模型加持的 Figure 01 机器人现在可以与人全面对话。 OpenAI 模型为机器人提供了高级…

git基础命令(一)

目录 基础概念git statusgit addgit diffgit loggit commit文件可以处于以下三种状态之一远程存储库与本地存储库参考 用于知识记录。后续有新的的内容&#xff0c;例子&#xff0c;将持续更新本文档。 基础概念 工作树&#xff1a;git add 之前&#xff0c;变动内容的文件列表…

微信小程序之tabBar

1、tabBar 如果小程序是一个多 tab 应用&#xff08;客户端窗口的底部或顶部有 tab 栏可以切换页面&#xff09;&#xff0c;可以通过 tabBar 配置项指定 tab 栏的表现&#xff0c;以及 tab 切换时显示的对应页面。 属性类型必填默认值描述colorHexColor是tab 上的文字默认颜色…

【开源-土拨鼠充电系统】鸿蒙 HarmonyOS 4.0+微信小程序+云平台

本人自己开发的开源项目&#xff1a;土拨鼠充电系统 ✍GitHub开源项目地址&#x1f449;&#xff1a;https://github.com/cheinlu/groundhog-charging-system ✍Gitee开源项目地址&#x1f449;&#xff1a;https://gitee.com/cheinlu/groundhog-charging-system ✨踩坑不易&am…

完美解决 RabbitMQ可视化界面Overview不显示折线图和队列不显示Messages

问题场景&#xff1a; 今天使用docker部署了一个RabbitMQ&#xff0c;浏览器打开15672可视化页面发送消息后不显示Overview中的折线图&#xff0c;还有队列中的Messages&#xff0c;因为我要看队列中的消息数量。 解决方案&#xff1a; 进入容器内部 docker exec -it 容器id…

【小白学机器学习9】自己纯手动计算验证,EXCEL的一元线性回归的各种参数值

目录 0 目标 1 构造模型 1.1 构造模型的思路 1.2 具体模型构造的EXCEL公式和过程 2 直接用EXCEL画图&#xff0c;然后生成趋势线的方式进行回归分析 2.1 先选择“观测值Y”的数据&#xff0c;用散点图或者折线图作图 2.2 然后添加趋势线和设置趋势线格式 2.3 生成趋…