谷歌通用AI智能体发布,3D游戏玩法要变天了

谷歌DeepMind号称打造出了首个能在广泛3D虚拟环境和视频游戏中遵循自然语言指令的通用AI智能体

名为SIMA,不是NPC,是可以成为玩家拍档,帮忙干活打杂的那种。

比如,在《模拟山羊3》(Goat Simulator 3)中当司机开开车:

在《幸福工厂》(Satisfactory)中挖矿石:

在《瓦尔海姆》(Valheim)中寻找水源:

在《无人深空》中(No Man’s Sky)驾驶宇宙飞船射击小行星收集资源:

……

SIMA全称Scalable Instructable Multiworld Agent,顾名思义可扩展、可指导、多世界。

之前,谷歌DeepMind在AI+游戏方面也做过许多工作,比如推出能和人类玩家打PK、会玩《星际争霸II》的AlphaStar系统。

而SIMA被DeepMind称作是一个“新的里程碑”,主打从适用单一游戏转向通用多种游戏,且可遵循语言指令。

SIMA一公开,网友们也是讨论热烈。

让它们替我完成无聊繁琐的任务,这样我就可以直接做有趣的部分,而不必花几个小时培育chocobos获取随机召唤。

嗯…《最终幻想》(Final Fantasy)玩家无疑了。

专业《模拟山羊》玩家在此刻也懵了:

最近这一连串的AI进展也是整的网友们措不及防,直呼“慢一点”:

10秒内完成的简单任务

接下来再来看一波SIMA的表现。

为了让SIMA接触到更多游戏环境,开发团队表示目前已与八家游戏工作室合作,在九款不同的视频游戏上训练和测试了SIMA。

当前的SIMA已在600个基本技能上进行了评估。

基本操作、交互、使用菜单都会:

简单的任务,10秒内可完成。

各种场景都能适应:

除此外,谷歌DeepMind还发布了一份技术报告,一起来看看里面都有啥。

未见过的游戏也会玩

SIMA的整体架构是将预训练视觉模型与自监督学习的Transformer相结合。

从用户那里接收语言指令,并从环境中获取图像观察结果,然后将它们映射为键盘和鼠标动作。

具体架构如下图:

开发人员收集了一个既包括精选研究环境又包括商业视频游戏的大型多样化游戏数据集。

此外,他们还用Unity创建的一个新环境,名为“the Construction Lab”。在这个环境中,智能体需要使用积木构建雕塑,这考验了它们对物体的操纵能力和对物理世界的理解。

数据收集包含多种方法,比如让不同成对的人类玩家的互动,其中一名玩家观察并指导另一名玩家,以此来捕获语言指令;让玩家自由玩游戏,观察他们的操作,并记录下可能导致其游戏行为的指令。

通过在不同的游戏世界中学习,SIMA能够将语言与游戏行为相结合。

不需要访问游戏源代码,也不需要定制API,仅需要两个输入:屏幕上的图像和用户提供的简单的自然语言指令。

然后SIMA就会使用键盘和鼠标输出来控制游戏角色以执行这些指令,这一操作与人类类似,也就意味着SIMA有潜力与任何虚拟环境互动。

在评估测试中,研究人员表示SIMA在九个3D游戏集上接受训练,表现显著优于仅在单个游戏上专门训练的智能体。

而且SIMA在未训练过的游戏中的表现和专门使用该游戏数据集训练过的智能体表现一样好。

也就是说,SIMA在全新环境中具备泛化能力。

此外测试结果还显示,SIMA的性能依赖于语言。在一个控制测试中,智能体没有接受任何语言训练或指令,它就会出现无目的的操作,不遵循指令。

而且,和人类玩家相比较,SIMA水平还是差一点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/539931.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unload-labs

function checkFile() {var file document.getElementsByName(upload_file)[0].value;if (file null || file "") {alert("请选择要上传的文件!");return false;}//定义允许上传的文件类型var allow_ext ".jpg|.png|.gif";//提取上传文件的类…

C#,数值计算,数据测试用的对称正定矩阵(Symmetric Positive Definite Matrix)的随机生成算法与源代码

C.Hermite 1、对称矩阵 对称矩阵(Symmetric Matrices)是指以主对角线为对称轴,各元素对应相等的矩阵。在线性代数中,对称矩阵是一个方形矩阵,其转置矩阵和自身相等。1855年,埃米特(C.Hermite,1822-1901年)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如称为埃…

Elastic Agent 的安装及使用

概述 Elastic Agent是Elastic Stack中的一个全新组件,旨在简化和统一监控和集成管理流程。它是一个轻量级的代理,可以部署到各种不同类型的主机和容器中,用于收集系统指标、日志和事件数据,并将其发送到Elasticsearch进行存储和分…

知识蒸馏Matching logits与RocketQAv2

知识蒸馏Matching logits 公式推导 刚开始的怎么来,可以转看下面证明梯度等于输出值-标签y C是一个交叉熵,我们要求解的是这个交叉熵对的这个梯度。就是你可以理解成第个类别的得分。就是student model,被蒸馏的模型,它所输出的…

vue iview 级联选择器遇到的坑

我们PC项目用到的前端技术栈是vue+iview,最近有个需求,要做个级联选择器,并且是懒加载动态加载后端返回的数据。效果如下: 如下图所示,在我们封装的公共组件form-box.vue里有我们级联选择器: 代码如下: <!--级联选择器--><template v-else-if="item.type…

蓝桥杯 EDA 组 2021-2022 省赛真题+模拟题原理图解析

本文解析了标题内的原理图蓝桥杯EDA组真题&#xff0c;为方便阅读2023年真题/模拟和国赛部分放到其他章节解析。下文中重复或者是简单的电路节约篇幅不在赘述。 其中需要补充和计算原理图的题目解析都放在最下面 一、2021第十二届真题第一场 1.1 AMS1117 线性稳压器 最常见的1…

PyTorch搭建AlexNet训练集

本次项目是使用AlexNet实现5种花类的识别。 训练集搭建与LeNet大致代码差不多&#xff0c;但是也有许多新的内容和知识点。 1.导包&#xff0c;不必多说。 import torch import torch.nn as nn from torchvision import transforms, datasets, utils import matplotlib.pypl…

【STM32学习】基本定时器,输出比较模式,基本参数

1、概述 此项功能是用来控制一个输出波形&#xff0c;或者指示一段给定的的时间已经到时。 如输出PWM信号时&#xff0c;可用这个模式。 2、输出比较初始化函数&#xff0c;基本参数 以上函数是用来配置输出比较模块的&#xff0c;每个函数对应一个定时器的通道&#xff0c;配…

LVGL移植到ARM开发板(GEC6818开发板)

LVGL移植到ARM开发板&#xff08;GEC6818开发板&#xff09; 一、LVGL概述 LVGL&#xff08;Light and Versatile Graphics Library&#xff09;是一个开源的图形用户界面库&#xff0c;旨在提供轻量级、可移植、灵活和易于使用的图形用户界面解决方案。 它适用于嵌入式系统…

自然语言处理实验2 字符级RNN分类实验

实验2 字符级RNN分类实验 必做题&#xff1a; &#xff08;1&#xff09;数据准备&#xff1a;academy_titles.txt为“考硕考博”板块的帖子标题&#xff0c;job_titles.txt为“招聘信息”板块的帖子标题&#xff0c;将上述两个txt进行划分&#xff0c;其中训练集为70%&#xf…

概率论与数理统计(随机事件与概率)

1随机事件与概率 1.1随机事件及其运算规律 1.1.1运算 交换律结合律分配律德摩根律 1.2概率的定义及其确定方法 1.2.1概率的统计定义 频率 设在 n 次试验中&#xff0c;事件 A 发生了(A)次&#xff0c;则称为事件 A 发生的频率。 1.2.2概率的统计定义 在一组恒定不变的条…

GPT-SoVITS开源音色克隆框架的训练与调试

GPT-SoVITS开源框架的报错与调试 遇到的问题解决办法 GPT-SoVITS是一款创新的跨语言音色克隆工具&#xff0c;同时也是一个非常棒的少样本中文声音克隆项目。 它是是一个开源的TTS项目&#xff0c;只需要1分钟的音频文件就可以克隆声音&#xff0c;支持将汉语、英语、日语三种…