【四 (3)数据可视化之 Seaborn 常用图表及代码实现 】

目录

    • 文章导航
    • 一、介绍
    • 二、安装Seaborn
    • 三、导入Seaborn
    • 四、设置可以中文显示
    • 五、占比类图表
      • 1、饼图
      • 2、环形图
    • 六、比较排序类
      • 1、条形图
      • 2、箱线图
      • 3、小提琴图
    • 七、趋势类图表
      • 1、折线图
    • 八、频率分布类
      • 1、直方图
    • 九、关系类图表
      • 1、散点图
      • 2、成对关系图
      • 3、热力图

文章导航

【一 简明数据分析进阶路径介绍(文章导航)】

一、介绍

Seaborn同Matplotlib一样,也是Python进行数据可视化分析的重要第三方包。但Seaborn在Matplotlib的基础上进行了更高级的API封装,使得作图更加容易,图形更加漂亮。Seaborn是基于Matplotlib产生的一个模块,专攻统计可视化,可以和Pandas进行无缝链接,使初学者更容易上手。相对于Matplotlib,Seaborn语法更简洁,两者的关系类似于NumPy和Pandas之间的关系。

但是应该强调的是,应该把Seaborn视为Matplotlib的补充,而不是替代物。

二、安装Seaborn

pip install seaborn

三、导入Seaborn

import seaborn as sns

四、设置可以中文显示

import matplotlib.pyplot as plt  # 设置matplotlib支持中文显示  
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体  
plt.rcParams['axes.unicode_minus'] = False  # 解决负号'-'显示为方块的问题
from matplotlib import font_manager  # 设置Matplotlib配置参数  
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体  
plt.rcParams['axes.unicode_minus'] = False  # 正确显示负号

五、占比类图表

1、饼图

import matplotlib.pyplot as plt  # 假设我们有以下数据  
labels = ['类别A', '类别B', '类别C', '类别D']  
sizes = [15, 30, 45, 10]  # 百分比或数量  # 绘制占饼图  
fig1, ax1 = plt.subplots()  
ax1.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)  
ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.  plt.title('占饼图示例')  
plt.show()

在这里插入图片描述

2、环形图

import matplotlib.pyplot as plt  
import numpy as np  # 假设我们有以下数据  
labels = ['类别A', '类别B', '类别C', '类别D']  
sizes = [15, 30, 45, 10]  # 外环数据  
sizes_inner = [10, 15, 30, 5]  # 内环数据  # 确保内环数据不超过外环数据  
sizes_inner = [min(s, si) for s, si in zip(sizes, sizes_inner)]  # 计算百分比  
sizes_pct = [s / sum(sizes) * 100 for s in sizes]  
sizes_inner_pct = [si / sum(sizes_inner) * 100 for si in sizes_inner]  # 绘制环形图  
fig, ax = plt.subplots()  # 外环  
ax.pie(sizes, labels=labels, colors=['blue'], wedgeprops=dict(width=0.3, edgecolor='w'), startangle=90)  # 内环  
ax.pie(sizes_inner,  colors=['red'], wedgeprops=dict(width=0.1, edgecolor='w'), startangle=90)  # 绘制中心圆  
ax.add_artist(plt.Circle((0.5, 0.5), 0.05, fc='white', ec='white'))  # 添加百分比标签  
def func(pct, allvals):  absolute = int(round(pct/100.*np.sum(allvals)))  return "{:.1f}% ({})".format(pct, absolute)  # 外环百分比标签  
wedges, texts, autotexts = ax.pie(sizes, labels=labels, autopct=lambda pct: func(pct, sizes),  wedgeprops=dict(width=0.3, edgecolor='w'), startangle=90)  # 设置标题和等比例显示  
ax.set_title('环形图示例')  
ax.axis('equal')  plt.show()

在这里插入图片描述

六、比较排序类

1、条形图

import seaborn as sns  
import matplotlib.pyplot as plt  
import pandas as pd  # 假设有一个包含分类变量和连续变量的DataFrame  
data = pd.DataFrame({  'Category': ['A', 'B', 'C', 'D', 'E'],  'Value': [23, 17, 35, 29, 12]  
})  # 绘制条形图  
sns.barplot(x='Category', y='Value', data=data)  # 设置图表标题和轴标签  
plt.title('条形图示例:不同类别的值')  
plt.xlabel('类别')  
plt.ylabel('值')  # 显示图表  
plt.show()

在这里插入图片描述

2、箱线图

import seaborn as sns  
import matplotlib.pyplot as plt  
import pandas as pd  
import numpy as np  # 假设有一个包含分类变量和连续变量的DataFrame  
np.random.seed(0)  # 设置随机种子以获得可复现的结果  
data = pd.DataFrame({  'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C'],  'Value': np.random.randn(9) * 100  # 生成正态分布的数据  
})  # 绘制箱线图  
sns.boxplot(x='Category', y='Value', data=data)  # 设置图表标题和轴标签  
plt.title('箱线图示例:不同类别的值分布')  
plt.xlabel('类别')  
plt.ylabel('值')  # 显示图表  
plt.show()

在这里插入图片描述

3、小提琴图

import seaborn as sns  
import matplotlib.pyplot as plt  
import pandas as pd  
import numpy as np  # 假设有一个包含分类变量和连续变量的DataFrame  
np.random.seed(0)  # 设置随机种子以获得可复现的结果  
data = pd.DataFrame({  'Category': ['A', 'B', 'C', 'A', 'B', 'C', 'A', 'B', 'C'],  'Value': np.random.randn(9) * 100  # 生成正态分布的数据  
})  # 绘制小提琴图  
sns.violinplot(x='Category', y='Value', data=data)  # 设置图表标题和轴标签  
plt.title('小提琴图示例:不同类别的值分布')  
plt.xlabel('类别')  
plt.ylabel('值')  # 显示图表  
plt.show()

在这里插入图片描述

七、趋势类图表

1、折线图

import seaborn as sns  
import matplotlib.pyplot as plt  
import pandas as pd  
import numpy as np  # 假设我们有一个包含时间序列和数值的数据集  
np.random.seed(0)  
data = pd.DataFrame({  'date': pd.date_range(start='2023-01-01', periods=12),  'value': np.random.randn(12).cumsum()  
})  # 绘制线图  
sns.lineplot(data=data, x='date', y='value')  # 设置图表标题和轴标签  
plt.title('折线图示例:随时间变化的数值')  
plt.xlabel('日期')  
plt.ylabel('值')  # 显示网格  
plt.grid(True)  # 显示图表  
plt.show()

在这里插入图片描述

八、频率分布类

1、直方图

import seaborn as sns  
import matplotlib.pyplot as plt  
import numpy as np  # 生成随机数据  
np.random.seed(0)  
data = np.random.randn(1000)  # 绘制直方图  
sns.histplot(data, kde=True)  # 设置图表标题和轴标签  
plt.title('直方图示例:数据分布')  
plt.xlabel('值')  
plt.ylabel('频数')  # 显示网格  
plt.grid(True)  # 显示图表  
plt.show()

在这里插入图片描述

九、关系类图表

1、散点图

import seaborn as sns  
import matplotlib.pyplot as plt  
import pandas as pd  # 创建一个模拟的数据集  
data = pd.DataFrame({  'Math': [85, 92, 78, 95, 88, 76, 91, 82, 79, 85],  'English': [88, 90, 82, 93, 87, 79, 92, 83, 80, 86]  
})  # 绘制散点图  
sns.scatterplot(data=data, x='Math', y='English', hue='Math')  # 添加图例标题  
plt.legend(title='数学成绩')  # 设置图表标题和轴标签  
plt.title('学生数学和英语成绩散点图')  
plt.xlabel('数学成绩')  
plt.ylabel('英语成绩')  # 显示网格  
plt.grid(True)  # 调整图表大小  
plt.figure(figsize=(8, 6))  # 显示图表  
plt.show()

在这里插入图片描述

2、成对关系图

import seaborn as sns  
import pandas as pd  
import numpy as np  # 假设我们有一个包含多个连续变量的数据集  
np.random.seed(0)  
data = pd.DataFrame(np.random.randn(200, 4), columns=['A', 'B', 'C', 'D'])  # 绘制成对关系图  
sns.pairplot(data, kind='reg')  # 添加线性回归线  # 设置图表标题  
plt.suptitle('成对关系图示例:多个连续变量之间的关系', y=1.05)  # 显示图表  
plt.show()

##

3、热力图

import seaborn as sns  
import matplotlib.pyplot as plt  
import numpy as np  # 创建一个随机的相关系数矩阵  
np.random.seed(0)  
corr_matrix = np.random.rand(6, 6)  
corr_matrix = (corr_matrix + corr_matrix.T) / 2  # 保证矩阵是对称的  
np.fill_diagonal(corr_matrix, 1)  # 对角线元素设为1  # 绘制热力图  
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')  # 设置图表标题  
plt.title('热力图示例:相关系数矩阵')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.hqwc.cn/news/541944.html

如若内容造成侵权/违法违规/事实不符,请联系编程知识网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

队列的算法

数组队列 数组的子集 主要方法addLast( )和removeFirst( ) public interface IQueueDesc<E>{void enqueue(E e);E dequeue();E getFront();int getSize();boolean isEmpty(); }public class QueueMyList<E> implements IQueueDesc<E{MyArray<E> a…

c语言实现https客户端 源码+详细注释(OpenSSL下载,visual studio编译器环境配置)

OpenSSL的下载和环境配置 请参考&#xff1a;openssl下载安装教程 步骤&#xff1a;官网下载->安装到选定目录->配置环境变量->打开命令窗口检查是否安装成功 注意&#xff1a; 打开命令窗口&#xff08;快捷键winr,在弹出窗口内输入cmd按回车&#xff09;&#xff0…

docker 学习笔记

Docker 1. 初识 Docker 快速构建、运行、管理应用的工具 1.1 安装 删除已有的 docker 版本 sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logrotate \docker-logrotate \docker-engine安装所需的软件包 首…

2024/03/15(网络编程·day3)

一、思维导图 二、模拟面试题 什么是IP地址&#xff1f; IP地址是主机在网络中的唯一标识。 分为IPv4和IPv6&#xff0c; IPv4由4字节32位二进制数组成&#xff0c;通常使用点分十进制表示&#xff0c;例如192.168.117.85 &#xff0c;其中每个十进制数的范围都在0-255. IPv6由…

【解读】Synopsys发布2024年开源安全和风险分析报告OSSRA

软件供应链管理中&#xff0c;许可证和安全合规性至关重要。开源组件和库可降低风险&#xff0c;但需了解许可证内容。Synopsys 2023年审计发现&#xff0c;超过一半的代码库存在许可证冲突。MIT许可证是最常用的宽松许可证&#xff0c;但也与其他许可证存在不兼容风险。点此获…

Android SystemServer进程解析

SystemServer进程在android系统中占了举足轻重的地位&#xff0c;系统的所有服务和SystemUI都是由它启动。 一、SystemServer进程主函数流程 1、主函数三部曲 //frameworks/base/services/java/com/android/server/SystemServer.java /** * The main entry point from zy…

51单片机LED8*8点阵显示坤坤跳舞打篮球画面

我们作为一名合格的 ikun&#xff0c;专业的小黑子&#xff0c;这个重要的知识必须学会。 先看效果&#xff1a; 51LED点阵_鸡你太美 这里我们首先要用到延时函数Delay&#xff1a; void Delay(unsigned int xms) {unsigned char i, j;while(xms--){ i 2;j 239;do{while (-…

AWS云上面的k8s统一日志收集(Fluent Bit+EKS+CW)

目标 k8s上面的常见的统一日志方案是EFK&#xff0c;具体如下&#xff1a; E:elasticsearch;F:fluentd;K:kibana 这里我们变成了使用fluentd的AWS替代品Fluent Bit&#xff0c;直接将日志输出到CloudWatch组。不需要E和K了。不过&#xff0c;这样仅仅用于AWS EKS。 步骤 给…

Scala--01--简介、环境搭建

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 1. Scala简介1.1 Scala是什么&#xff1f;官网&#xff1a; [https://scala-lang.org/](https://scala-lang.org/)官方文档&#xff1a; [https://docs.scala-lang.…

工具-百度云盘服务-身份认证

目标 通过百度网盘API的方式去获取网盘中的文件&#xff0c;要实现这的第一步就是需要获取网盘的权限。资料(参考) 如果期望应用访问用户的网盘文件&#xff0c;则需要经过用户同意&#xff0c;这个流程被称为“授权”。百度网盘开放平台基于 OAuth2.0 接入授权。OAuth2.0 是…

Tomcat不识别请求路径中的特殊字符{}

报错内容解决方法1 /opt/tomcat/conf/catalina.properties --> tomcat.util.http.parser.HttpParser.requestTargetAllow|{} 解决方法2 /opt/tomcat/conf/server.xml --> relaxedQueryChars"[]|{}-^&#x60;&quot;<>" relaxedPathChars"[]|{…

分布式CAP理论

CAP理论&#xff1a;一致性&#xff08;Consistency&#xff09;、可用性&#xff08;Availability&#xff09;和分区容错性&#xff08;Partition tolerance&#xff09;。是Eric Brewer在2000年提出的&#xff0c;用于描述分布式系统基本性质的定理。这三个性质在分布式系统…